FANUC Robot series R-30iB CONTROLLER MAINTENANCE MANUAL

Original Instructions

Thank you very much for purchasing FANUC Robot.

Before using the Robot, be sure to read the "FANUC Robot SAFETY HANDBOOK (B-80687EN)" and understand the content.

- No part of this manual may be reproduced in any form.
- The appearance and specifications of this product are subject to change without notice.

The products in this manual are controlled based on Japan's "Foreign Exchange and Foreign Trade Law". The export from Japan may be subject to an export license by the government of Japan. Further, re-export to another country may be subject to the license of the government of the country from where the product is re-exported. Furthermore, the product may also be controlled by re-export regulations of the United States government. Should you wish to export or re-export these products, please contact FANUC for advice.

The products in this manual are manufactured under strict quality control. However, when using any of the products in a facility in which a serious accident or loss is predicted due to a failure of the product, install a safety device.

In this manual, we endeavor to include all pertinent matters. There are, however, a very large number of operations that must not or cannot be performed, and if the manual contained them all, it would be enormous in volume. It is, therefore, requested to assume that any operations that are not explicitly described as being possible are "not possible".

SAFETY PRECAUTIONS

This chapter describes the precautions which must be observed to ensure the safe use of the robot. Before attempting to use the robot, be sure to read this chapter thoroughly.

Before using the functions related to robot operation, read the relevant operator's manual to become familiar with those functions.

For the safety of the operator and the system, follow all safety precautions when operating a robot and its peripheral devices installed in a work cell.

In addition, refer to the "FANUC Robot SAFETY HANDBOOK (B-80687EN)".

1 DEFINITON OF USER

The user can be classified as follows.

Operator:

- Turns robot controller power ON/OFF
- Starts robot program from Contact your local FANUC representative

Programmer:

- · Operates the robot
- Teaches robot inside the safety fence

Maintenance engineer:

- Operates the robot
- Teaches robot inside the safety fence
- Maintenance (repair, adjustment, replacement)
- An operator cannot work inside the safety fence.
- A programmer, teaching operator, and maintenance engineer can work inside the safety fence. The working activities inside the safety fence include lifting, setting, teaching, adjusting, maintenance, etc.
- To work inside the fence, the person must be trained on proper robot operation.

During the operation, programming, and maintenance of your robotic system, the programmer, teaching operator, and maintenance engineer should take additional care of their safety by using the following safety precautions.

- Use adequate clothing or uniforms during system operation
- Wear safety shoes
- Use helmet

2

NOTATION OF "WARNING", "CAUTION" and "NOTE"

To ensure the safety of working persons and prevent damage to the machine, this manual indicates each precaution on safety with "WARNING" or "CAUTION" according to its severity. Supplementary information is indicated by "NOTE". Please read each "WARNING", "CAUTION" and "NOTE" before attempting to use the robots.

Symbol	Definitions
A	Used if hazard resulting in the death or serious injury of the user will be expected to
/ ↓ WARNING	occur if he or she fails to follow the approved procedure.
^	Used if a hazard resulting in the minor or moderate injury of the user, or equipment
	damage may be expected to occur if he or she fails to follow the approved procedure.
NOTE	Used if a supplementary explanation not related to any of WARNING and CAUTION
NOTE	is to be indicated.

• Check this manual thoroughly, and keep it handy for the future reference.

3 USER SAFETY

User safety is the primary safety consideration. Because it is very dangerous to enter the operating space of the robot during automatic operation, adequate safety precautions must be observed.

The following lists the general safety precautions. Careful consideration must be made to ensure user safety.

(1) Have the robot system users attend the training courses held by FANUC.

FANUC provides various training courses. Contact our sales office for details.

- (2) Even when the robot is stationary, it is possible that the robot is still in a ready to move state, and is waiting for a signal. In this state, the robot is regarded as still in motion. To ensure user safety, provide the system with an alarm to indicate visually or aurally that the robot is in motion.
- (3) Install a safety fence with a gate so that no user can enter the work area without passing through the gate. Install an interlocking device, a safety plug, and so forth in the safety gate so that the robot is stopped as the safety gate is opened.

The controller is designed to receive this interlocking signal of the door switch. When the gate is opened and this signal received, the controller stops the robot (Please refer to "STOP TYPE OF ROBOT" in SAFETY PRECAUTIONS for detail of stop type). For connection, see Fig.3 (a) and Fig.2 (b).

- (4) Provide the peripheral devices with appropriate grounding (Class A, Class B, Class C, and Class D).
- (5) Try to install the peripheral devices outside the work area.
- (6) Draw an outline on the floor, clearly indicating the range of the robot motion, including the tools such as a hand.
- (7) Install a mat switch or photoelectric switch on the floor with an interlock to a visual or aural alarm that stops the robot when a user enters the work area.
- (8) If necessary, install a safety lock so that no one except the user in charge can turn on the power of the robot.

The circuit breaker installed in the controller is designed to disable anyone from turning it on when it is locked with a padlock.

- (9) When adjusting each peripheral device independently, be sure to turn off the power of the robot
- (10) Operators should be ungloved while manipulating the Contact your local FANUC representative or teach pendant. Operation with gloved fingers could cause an operation error.
- (11) Programs, system variables, and other information can be saved on memory card or USB memories. Be sure to save the data periodically in case the data is lost in an accident.
- (12) The robot should be transported and installed by accurately following the procedures recommended by FANUC. Wrong transportation or installation may cause the robot to fall, resulting in severe injury to workers.
- (13) In the first operation of the robot after installation, the operation should be restricted to low speeds. Then, the speed should be gradually increased to check the operation of the robot.
- (14) Before the robot is started, it should be checked that no one is in the area of the safety fence. At the same time, a check must be made to ensure that there is no risk of hazardous situations. If detected, such a situation should be eliminated before the operation.
- (15) When the robot is used, the following precautions should be taken. Otherwise, the robot and peripheral equipment can be adversely affected, or workers can be severely injured.
 - Avoid using the robot in a flammable environment.
 - Avoid using the robot in an explosive environment.
 - Avoid using the robot in an environment full of radiation.
 - Avoid using the robot under water or at high humidities.
 - Avoid using the robot to carry a person or animal.
 - Avoid using the robot as a stepladder. (Never climb up on or hang from the robot.)
- (16) After connecting the safety signals like external emergency stop signal and/or safety fence signal, verify that,
 - · All safety signals stop the robot as intended.
 - There is no mistake in connection of safety signals.

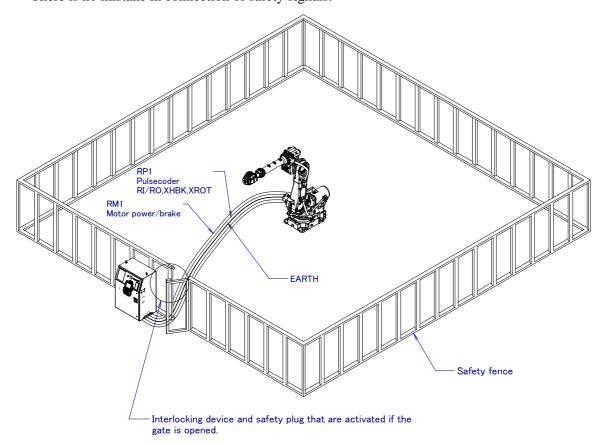


Fig.3 (a) Safety fence and safety gate

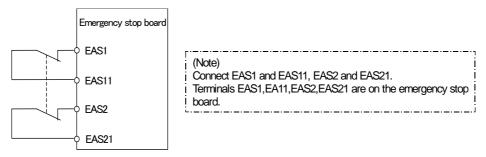


Fig.3 (b) Limit switch circuit diagram of the safety fence

3.1 OPERATOR SAFETY

The operator is a person who operates the robot system. In this sense, a worker who operates the teach pendant is also an operator. However, this section does not apply to teach pendant operators.

- (1) If you do not have to operate the robot, turn off the power of the robot controller or press the EMERGENCY STOP button, and then proceed with necessary work.
- (2) Operate the robot system at a location outside of the safety fence
- (3) Install a safety fence with a safety gate to prevent any worker other than the operator from entering the work area unexpectedly and to prevent the worker from entering a dangerous area.
- (4) Install one or more necessary quantity of EMERGENCY STOP button(s) within the operator's reach in appropriate location(s) based on the system layout.

The robot controller is designed to be connected to an external EMERGENCY STOP button. With this connection, the controller stops the robot operation (Please refer to "STOP TYPE OF ROBOT" in SAFETY PRECAUTIONS for detail of stop type), when the external EMERGENCY STOP button is pressed. For connection, see Fig.3.1.

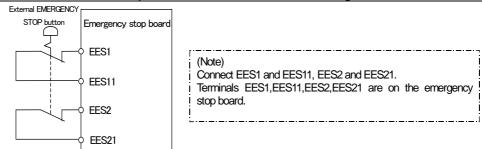


Fig. 3.1 Connection Diagram for External Emergency Stop Button

3.2 SAFETY OF THE PROGRAMMER

While teaching the robot, the operator must enter the work area of the robot. The operator must ensure the safety of the teach pendant operator especially.

- (1) Unless it is specifically necessary to enter the robot work area, carry out all tasks outside the area.
- (2) Before teaching the robot, check that the robot and its peripheral devices are all in the normal operating condition.
- (3) If it is inevitable to enter the robot work area to teach the robot, check the locations, settings, and other conditions of the safety devices (such as the EMERGENCY STOP button, the DEADMAN switch on the teach pendant) before entering the area.
- (4) The programmer must be extremely careful not to let anyone else enter the robot work area.
- (5) Programming should be done outside the area of the safety fence as far as possible. If programming needs to be done in the area of the safety fence, the programmer should take the following precautions:

- Before entering the area of the safety fence, ensure that there is no risk of dangerous situations in the area
- Be prepared to press the emergency stop button whenever necessary.
- Robot motions should be made at low speeds.
- Before starting programming, check the entire system status to ensure that no remote instruction to the peripheral equipment or motion would be dangerous to the user.

The operator panel is provided with an emergency stop button and a key switch (mode switch) for selecting the automatic operation mode (AUTO) and the teach modes (T1 and T2). Before entering the inside of the safety fence for the purpose of teaching, set the switch to a teach mode, remove the key from the mode switch to prevent other people from changing the operation mode carelessly, then open the safety gate. If the safety gate is opened with the automatic operation mode set, the robot stops (Please refer to "STOP TYPE OF ROBOT" in SAFETY PRECAUTIONS for detail of stop type). After the switch is set to a teach mode, the safety gate is disabled. The programmer should understand that the safety gate is disabled and is responsible for keeping other people from entering the inside of the safety fence.

The teach pendant is provided with an enable/disable switch, DEADMAN switch as well as an emergency stop button. These button and switch function as follows:

- (1) Emergency stop button: Causes the stop of the robot (Please refer to "STOP TYPE OF ROBOT" in SAFETY PRECAUTIONS for detail of stop type) when pressed.
- (2) DEADMAN switch: Functions differently depending on the teach pendant enable/disable switch setting status.
 - (a) Disable: The DEADMAN switch is disabled.
 - (b) Enable: Servo power is turned off when the operator releases the DEADMAN switch or when the operator presses the switch strongly.
 - Note) The DEADMAN switch is provided to stop the robot when the operator releases the teach pendant or presses the pendant strongly in case of emergency. The R-30*i*B employs a 3-position DEADMAN switch, which allows the robot to operate when the 3-position DEADMAN switch is pressed to its intermediate point. When the operator releases the DEADMAN switch or presses the switch strongly, the robot stops immediately.

Based on the risk assessment by FANUC, number of operation of DEADMAN SW should not exceed about 10000 times per year.

The operator's intention of starting teaching is determined by the controller through the dual operation of setting the teach pendant enable/disable switch to the enable position and pressing the DEADMAN switch. The operator should make sure that the robot could operate in such conditions and be responsible in carrying out tasks safely.

The teach pendant, operator panel, and peripheral device interface send each robot start signal. However the validity of each signal changes as follows depending on the mode switch of the operator panel, the teach pendant enable/disable switch and the remote condition on the software.

Mode	Teach pendant enable/disable switch	Software remote condition	Teach pendant	Operator panel	Peripheral device
	2	Local	Not allowed	Not allowed	Not allowed
AUTO	On	Remote	Not allowed	Not allowed	Not allowed
mode	Off	Local	Not allowed	Allowed to start	Not allowed
		Remote	Not allowed	Not allowed	Allowed to start
	On	Local	Allowed to start	Not allowed	Not allowed
T1, T2	On	Remote	Allowed to start	Not allowed	Not allowed
mode	Off	Local	Not allowed	Not allowed	Not allowed
	Off	Remote	Not allowed	Not allowed	Not allowed

T1,T2 mode: DEADMAN switch is effective.

- (6) To start the system using the Contact your local FANUC representative, make certain that nobody is the robot work area and that there are no abnormal conditions in the robot work area.
- (7) When a program is completed, be sure to carry out a test operation according to the procedure below.
 - (a) Run the program for at least one operation cycle in the single step mode at low speed.
 - (b) Run the program for at least one operation cycle in the continuous operation mode at low speed.
 - (c) Run the program for one operation cycle in the continuous operation mode at the intermediate speed and check that no abnormalities occur due to a delay in timing.
 - (d) Run the program for one operation cycle in the continuous operation mode at the normal operating speed and check that the system operates automatically without trouble.
 - (e) After checking the completeness of the program through the test operation above, execute it in the automatic operation mode.
- (8) While operating the system in the automatic operation mode, the teach pendant operator should leave the robot work area.

3.3 SAFETY OF THE MAINTENANCE ENGINEER

For the safety of maintenance engineer personnel, pay utmost attention to the following.

- (1) During operation, never enter the robot work area.
- (2) A hazardous situation may arise when the robot or the system, are kept with their power-on during maintenance operations. Therefore, for any maintenance operation, the robot and the system should be put into the power-off state. If necessary, a lock should be in place in order to prevent any other person from turning on the robot and/or the system. In case maintenance needs to be executed in the power-on state, the emergency stop button must be pressed.
- (3) If it becomes necessary to enter the robot operation range while the power is on, press the emergency stop button on the operator panel, or the teach pendant before entering the range. The maintenance personnel must indicate that maintenance work is in progress and be careful not to allow other people to operate the robot carelessly.
- (4) When entering the area enclosed by the safety fence, the maintenance worker should check the entire system to make sure that no dangerous situations are present. If the worker needs to enter the area of the fence while a dangerous situation exists, the worker should always take extreme care and check the current system status.
- (5) Before the maintenance of the pneumatic system is started, the supply pressure should be shut off and the pressure in the piping should be reduced to zero.
- (6) Before the start of teaching, check that the robot and its peripheral devices are all in the normal operating condition.
- (7) Do not operate the robot in the automatic mode while anybody is in the robot work area.
- (8) When you maintain the robot alongside a wall or instrument, or when multiple workers are working nearby, make certain that their escape path is not obstructed.
- (9) When a tool is mounted on the robot, or when any moving device other than the robot is installed, such as belt conveyor, pay careful attention to its motion.
- (10) If necessary, have a worker who is familiar with the robot system stand beside the operator panel and observe the work being performed. If any danger arises, the worker should be ready to press the EMERGENCY STOP button at any time.
- (11) When replacing a part, please contact FANUC service center. If a wrong procedure is followed, an accident may occur, causing damage to the robot and injury to the worker.
- (12) When replacing or reinstalling components, take care to prevent foreign material from entering the system.
- (13) When handling each unit or printed circuit board in the controller during inspection, turn off the circuit breaker to protect against electric shock.

 If there are two cabinets, turn off the both circuit breaker.

- (14) A part should be replaced with a part recommended by FANUC. If other parts are used, malfunction or damage would occur. Especially, a fuse that is not recommended by FANUC should not be used. Such a fuse may cause a fire.
- (15) When restarting the robot system after completing maintenance work, make sure in advance that there is no person in the work area and that the robot and the peripheral devices are not abnormal.
- (16) When a motor or brake is removed, the robot arm should be supported with a crane or other equipment beforehand so that the arm would not fall during the removal.
- (17) Whenever grease is spilled on the floor, it should be removed as quickly as possible to prevent dangerous falls.
- (18) The following parts are heated. If a maintenance worker needs to touch such a part in the heated state, the worker should wear heat-resistant gloves or use other protective tools.
 - Servo motor
 - Inside the controller
- (19) Maintenance should be done under suitable light. Care must be taken that the light would not cause any danger.
- (20) When a motor, decelerator, or other heavy load is handled, a crane or other equipment should be used to protect maintenance workers from excessive load. Otherwise, the maintenance workers would be severely injured.
- (21) The robot should not be stepped on or climbed up during maintenance. If it is attempted, the robot would be adversely affected. In addition, a misstep can cause injury to the worker.
- (22) After the maintenance is completed, spilled oil or water and metal chips should be removed from the floor around the robot and within the safety fence.
- (23) When a part is replaced, all bolts and other related components should put back into their original places. A careful check must be given to ensure that no components are missing or left unmounted.
- (24) In case robot motion is required during maintenance, the following precautions should be taken:
 - Foresee an escape route. And during the maintenance motion itself, monitor continuously the whole system so that your escape route will not become blocked by the robot, or by peripheral equipment.
 - Always pay attention to potentially dangerous situations, and be prepared to press the emergency stop button whenever necessary.
- (25) The robot should be periodically inspected. (Refer to the manual of the controller or mechanical unit.) A failure to do the periodical inspection can adversely affect the performance or service life of the robot and also may cause an accident.
- (26) After a part is replaced, a test operation should be given for the robot according to a predetermined method. (See TESTING section of "Controller operator's manual".) During the test operation, the maintenance staff should work outside the safety fence.

4 SAFETY OF THE TOOLS AND PERIPHERAL DEVICES

4.1 PRECAUTIONS IN PROGRAMMING

- (1) Use a limit switch or other sensor to detect a dangerous condition and, if necessary, design the program to stop the robot when the sensor signal is received.
- (2) Design the program to stop the robot when an abnormal condition occurs in any other robots or peripheral devices, even though the robot itself is normal.
- (3) For a system in which the robot and its peripheral devices are in synchronous motion, particular care must be taken in programming so that they do not interfere with each other.
- (4) Provide a suitable interface between the robot and its peripheral devices so that the robot can detect the states of all devices in the system and can be stopped according to the states.

4.2 PRECAUTIONS FOR MECHANISM

- (1) Keep the component cells of the robot system clean, operate the robot where insulated from the influence of grease, water, and dust.
- (2) Don't use unconfirmed liquid for cutting fluid and cleaning fluid.
- (3) Adopt limit switches or mechanical stoppers to limit the robot motion, and avoid the robot from collisions against peripheral devices or tools.
- (4) Observe the following precautions about the mechanical unit cables. Failure to follow precautions may cause mechanical troubles.
 - Use mechanical unit cable that have required user interface.
 - Do not add user cable or hose to inside of mechanical unit.
 - Please do not obstruct the movement of the mechanical unit when cables are added to outside
 of mechanical unit.
 - In the case of the model that a cable is exposed, please do not perform remodeling (Adding a protective cover and fix an outside cable more) obstructing the behavior of the outcrop of the cable.
 - When installing user peripheral equipment on the robot mechanical unit, please pay attention that equipment does not interfere with the robot itself.
- (5) The frequent power-off stop for the robot during operation causes the trouble of the robot. Please avoid the system construction that power-off stop would be operated routinely. (Refer to bad case example.) Please perform power-off stop after reducing the speed of the robot and stopping it by hold stop or cycle stop when it is not urgent. (Please refer to "STOP TYPE OF ROBOT" in SAFETY PRECAUTIONS for detail of stop type.)

(Bad case example)

- Whenever poor product is generated, a line stops by emergency stop and power-off of the robot is incurred.
- When alteration is necessary, safety switch is operated by opening safety fence and power-off stop is incurred for the robot during operation.
- An operator pushes the emergency stop button frequently, and a line stops.
- An area sensor or a mat switch connected to safety signal operates routinely and power-off stop is incurred for the robot.
- Power-off stop is regularly incurred due to an inappropriate setting for Dual Check Safety (DCS).
- (6) Power-off stop of Robot is executed when collision detection alarm (SRVO-050) etc. occurs. Please try to avoid unnecessary power-off stops. It may cause the trouble of the robot, too. So remove the causes of the alarm.

5 SAFETY OF THE ROBOT MECHANISM

5.1 PRECAUTIONS IN OPERATION

- (1) When operating the robot in the jog mode, set it at an appropriate speed so that the operator can manage the robot in any eventuality.
- (2) Before pressing the jog key, be sure you know in advance what motion the robot will perform in the jog mode.

5.2 PRECAUTIONS IN PROGRAMMING

(1) When the work areas of robots overlap, make certain that the motions of the robots do not interfere with each other.

(2) Be sure to specify the predetermined work origin in a motion program for the robot and program the motion so that it starts from the origin and terminates at the origin.

Make it possible for the operator to easily distinguish at a glance that the robot motion has terminated.

5.3 PRECAUTIONS FOR MECHANISMS

(1) Keep the work areas of the robot clean, and operate the robot in an environment free of grease, water, and dust.

5.4 PROCEDURE TO MOVE ARM WITHOUT DRIVE POWER IN EMERGENCY OR ABNORMAL SITUATIONS

For emergency or abnormal situations (e.g. persons trapped in or pinched by the robot), brake release unit can be used to move the robot axes without drive power.

Please refer to this manual and mechanical unit operator's manual for using method of brake release unit and method of supporting robot.

6 SAFETY OF THE END EFFECTOR

6.1 PRECAUTIONS IN PROGRAMMING

- (1) To control the pneumatic, hydraulic and electric actuators, carefully consider the necessary time delay after issuing each control command up to actual motion and ensure safe control.
- (2) Provide the end effector with a limit switch, and control the robot system by monitoring the state of the end effector.

7 STOP TYPE OF ROBOT

The following three robot stop types exist:

Power-Off Stop (Category 0 following IEC 60204-1)

Servo power is turned off and the robot stops immediately. Servo power is turned off when the robot is moving, and the motion path of the deceleration is uncontrolled.

The following processing is performed at Power-Off stop.

- An alarm is generated and servo power is turned off.
- The robot operation is stopped immediately. Execution of the program is paused.

Controlled stop (Category 1 following IEC 60204-1)

The robot is decelerated until it stops, and servo power is turned off.

The following processing is performed at Controlled stop.

- The alarm "SRVO-199 Controlled stop" occurs along with a decelerated stop. Execution of the program is paused.
- An alarm is generated and servo power is turned off.

Hold (Category 2 following IEC 60204-1)

The robot is decelerated until it stops, and servo power remains on.

The following processing is performed at Hold.

The robot operation is decelerated until it stops. Execution of the program is paused.

⚠ WARNING

The stopping distance and stopping time of Controlled stop are longer than the stopping distance and stopping time of Power-Off stop. A risk assessment for the whole robot system, which takes into consideration the increased stopping distance and stopping time, is necessary when Controlled stop is used.

When the E-Stop button is pressed or the FENCE is open, the stop type of robot is Power-Off stop or Controlled stop. The configuration of stop type for each situation is called *stop pattern*. The stop pattern is different according to the controller type or option configuration.

There are the following 2 Stop patterns.

Stop pattern	Mode	E-Stop button	External E-Stop	FENCE open	SVOFF input
	AUTO	P-Stop	P-Stop	C-Stop	C-Stop
Α	T1	P-Stop	P-Stop	-	C-Stop
	T2	P-Stop	P-Stop	-	C-Stop
	AUTO	C-Stop	C-Stop	C-Stop	C-Stop
С	T1	P-Stop	P-Stop	-	C-Stop
	T2	P-Stop	P-Stop	-	C-Stop

P-Stop: Power-Off stop Controlled stop C-Stop:

Disable

↑ WARNING

In this manual, the term "Emergency-stop" is used for the stop by above safety signals. Please refer to above table for actual stop type.

The following table indicates the Stop pattern according to the controller type or option configuration.

Stop pattern
A
С

The stop pattern of the controller is displayed in "Stop pattern" line in software version screen. Please refer "Software version" in operator's manual of controller for the detail of software version screen.

"Controlled stop by E-Stop" option

"Controlled stop by E-Stop" option (A05B-2600-J570) is an optional function. When this option is loaded, the stop type of the following alarms becomes Controlled stop but only in AUTO mode. In T1 or T2 mode, the stop type is Power-Off stop which is the normal operation of the system.

Alarm	Condition
SRVO-001 Operator panel E-stop	Operator panel E-stop is pressed.
SRVO-002 Teach pendant E-stop	Teach pendant E-stop is pressed.
SRVO-007 External emergency stops	External emergency stop input (EES1-EES11, EES2-EES21) is
	open.
SRVO-408 DCS SSO Ext Emergency Stop	In DCS Safe I/O connect function, SSO[3] is OFF.
SRVO-409 DCS SSO Servo Disconnect	In DCS Safe I/O connect function, SSO[4] is OFF.

Controlled stop is different from Power-Off stop as follows:

- In Controlled stop, the robot is stopped on the program path. This function is effective for a system where the robot can interfere with other devices if it deviates from the program path.
- In Controlled stop, physical impact is less than Power-Off stop. This function is effective for systems where the physical impact to the mechanical unit or EOAT (End Of Arm Tool) should be minimized.
- The stopping distance and stopping time of Controlled stop is longer than the stopping distance and stopping time of Power-Off stop, depending on the robot model and axis. Please refer to the operator's manual of a particular robot model for the data of stopping distance and stopping time.

When this option is loaded, this function can not be disabled.

The stop type of DCS Position and Speed Check functions is not affected by the loading of this option.

↑ WARNING

The stopping distance and stopping time of Controlled stop are longer than the stopping distance and stopping time of Power-Off stop. A risk assessment for the whole robot system, which takes into consideration the increased stopping distance and stopping time, is necessary when this option is loaded.

8 WARNING & CAUTION LABEL

(1) Step-on prohibitive label

Fig.8 (a) Step-on prohibitive label

Description

Do not step on or climb the robot or controller as it may adversely affect the robot or controller and you may get hurt if you lose your footing.

(2) High-temperature warning label

Fig.8 (b) High-Temperature warning label

Description

Be cautious about a section where this label is affixed, as the section generates heat. If you must touch such a section when it is hot, use a protective provision such as heat-resistant gloves.

(3) High-voltage warning label

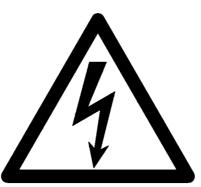


Fig.8 (c) High-voltage warning label

Description

A high voltage is applied to the places where this label is attached.

Before starting maintenance, turn the power to the controller off, and turn the circuit breaker off to avoid electric shock hazards. Take additional precautions with the servo amplifier and other equipment, because high-voltage remains in these units for a certain amounts of time

B-83195EN/07 PREFACE

PREFACE

This manual describes the following models (R-30iB controller).

Model		Abbreviation
FANUC Robot R-2000iB/165F	R-2000 <i>i</i> B/165F	
FANUC Robot R-2000iB/210F	R-2000iB/210F	
FANUC Robot R-2000iB/250F	R-2000iB/250F	
FANUC Robot R-2000iB/125L	R-2000iB/125L	
FANUC Robot R-2000iB/175L	R-2000iB/175L	
FANUC Robot R-2000iB/185L	R-2000iB/185L	
FANUC Robot R-2000iB/165R	R-2000iB/165R	
FANUC Robot R-2000iB/200R	R-2000iB/200R	
FANUC Robot R-2000iB/170CF	R-2000iB/170CF	R-2000 <i>i</i> B
FANUC Robot R-2000iB/100P	R-2000iB/100P	
FANUC Robot R-2000iB/100H	R-2000iB/100H	
FANUC Robot R-2000iB/150U	R-2000iB/150U	
FANUC Robot R-2000iB/200T	R-2000iB/200T	
FANUC Robot R-2000iB/220U	R-2000iB/220U	
FANUC Robot R-2000iB/210WE	R-2000iB/210WE	
FANUC Robot R-2000iB/210FS	R-2000iB/210FS	
FANUC Robot R-2000iB/220US	R-2000iB/220US	
FANUC Robot R-2000iC/125L	R-2000iC/125L	
FANUC Robot R-2000iC/165F	R-2000iC/165F	
FANUC Robot R-2000iC/165R	R-2000iC/165R	R-2000 <i>i</i> C
FANUC Robot R-2000iC/210F	R-2000iC/210F	
FANUC Robot R-2000iC/210R	R-2000iC/210R	
FANUC Robot R-1000iA/80F	R-1000iA/80F	
FANUC Robot R-1000iA/100F	R-1000iA/100F	R-1000 <i>i</i> A
FANUC Robot R-1000iA/80H	R-1000iA/80H	
FANUC Robot M-10iA	M-10 <i>i</i> A	
FANUC Robot M-10iA/6L	M-10 <i>i</i> A/6L	
FANUC Robot M-10iA/7L	M-10 <i>i</i> A/7L	
FANUC Robot M-10iA/8L	M-10 <i>i</i> A/8L	
FANUC Robot M-10iA/10S	M-10 <i>i</i> A/10S	M-10 <i>i</i> A
FANUC Robot M-10iA/10M	M-10 <i>i</i> A/10M	
FANUC Robot M-10iA/10MS	M-10 <i>i</i> A/10MS	
FANUC Robot M-10iA/12	M-10 <i>i</i> A/12	
FANUC Robot M-10iA/12S	M-10iA/12S	
FANUC Robot M-20iA	M-20 <i>i</i> A	
FANUC Robot M-20iA/10L	M-20 <i>i</i> A/10L	
FANUC Robot M-20iA/12L	M-20 <i>i</i> A/12L	
FANUC Robot M-20iA/20T	M-20 <i>i</i> A/20T	M-20 <i>i</i> A
FANUC Robot M-20iA/20M	M-20 <i>i</i> A/20M	IVI-ZUIA
FANUC Robot M-20iA/20MT	M-20 <i>i</i> A/20MT	
FANUC Robot M-20iA/35M	M-20 <i>i</i> A/35M	
FANUC Robot M-20iA/35MT	M-20 <i>i</i> A/35MT	

Model		Abbreviation
FANUC Robot ARC Mate 100iC	ARC Mate 100iC	
FANUC ROBOWELD 100iC	ARC Male 100/C	
FANUC Robot ARC Mate 100/c/6L	ARC Mate 100iC/6L	
FANUC ROBOWELD 100iC/6L	AINO Male 100/0/0L	
FANUC Robot ARC Mate 100iC /7L	ARC Mate 100iC/7L	ARC Mate 100iC
FANUC Robot ARC Mate 100iC /8L	ARC Mate 100iC/8L	
FANUC Robot ARC Mate 100iC/10S	ARC Mate 100iC/10S	
FANUC Robot ARC Mate 100iC/12	ARC Mate 100iC/12	
FANUC Robot ARC Mate 100iC/12S	ARC Mate 100iC/12S	
FANUC Robot ARC Mate 120iC	ARC Mate 120iC	
FANUC ROBOWELD 120iC	AITO Mate 120/0	
FANUC Robot ARC Mate 120iC/10L	ARC Mate 120iC/10L	ARC Mate 120iC
FANUC ROBOWELD 120iC/10L	71110 Mate 12010/102	Tire mate 12070
FANUC Robot ARC Mate 120iC/12L	ARC Mate 120iC/12L	
FANUC Robot ARC Mate 120iC/20T	ARC Mate 120iC/20T	
FANUC Robot M-710iC/70	M-710 <i>i</i> C/70	
FANUC Robot M-710iC/70T	M-710 <i>i</i> C/70T	
FANUC Robot M-710iC/50	M-710 <i>i</i> C/50	
FANUC Robot M-710iC/50S	M-710iC/50S	
FANUC Robot M-710iC/50T	M-710 <i>i</i> C/50T	M-710 <i>i</i> C
FANUC Robot M-710iC/50E	M-710 <i>i</i> C/50E	W 7 1670
FANUC Robot M-710iC/50H	M-710 <i>i</i> C/50H	
FANUC Robot M-710iC/45M	M-710 <i>i</i> C/45M	
FANUC Robot M-710iC/20L	M-710 <i>i</i> C/20L	
FANUC Robot M-710iC/12L	M-710 <i>i</i> C/12L	
FANUC Robot M-2iA/3S	M-2iA/3S	
FANUC Robot M-2iA/3SL	M-2iA/3SL	
FANUC Robot M-2iA/6H	M-2 <i>i</i> A/6H	M-2 <i>i</i> A
FANUC Robot M-2iA/6HL	M-2iA/6HL	IVI-ZIA
FANUC Robot M-2iA/3A	M-2 <i>i</i> A/3A	
FANUC Robot M-2iA/3AL	M-2iA/3AL	
FANUC Robot M-3iA/6A	M-3 <i>i</i> A/6A	
FANUC Robot M-3iA/6S	M-3iA/6S	M-3 <i>i</i> A
FANUC Robot M-3iA/12H	M-3 <i>i</i> A/12H	
FANUC Robot M-410iB/140H	M-410 <i>i</i> B/140H	
FANUC Robot M-410iB/160	M-410 <i>i</i> B/160	
FANUC Robot M-410iB/300	M-410 <i>i</i> B/300	M-410 <i>i</i> B
FANUC Robot M-410iB/450	M-410 <i>i</i> B/450	
FANUC Robot M-410iB/700	M-410 <i>i</i> B/700	
FANUC Robot M-410iC/185	M-410 <i>i</i> C/185	M-410 <i>i</i> C
FANUC Robot M-410iC/315	M-410 <i>i</i> C/315	IVI-4 I U/C
FANUC Robot M-420iA	M-420 <i>i</i> A	
FANUC Robot M-421iA	M-421 <i>i</i> A	

B-83195EN/07 PREFACE

Model		Abbreviation
FANUC Robot M-430iA/2P	M-430 <i>i</i> A/2P	
FANUC Robot M-430iA/2PH	M-430 <i>i</i> A/2PH	M-430 <i>i</i> A
FANUC Robot M-430iA/4FH	M-430 <i>i</i> A/4FH	
FANUC Robot M-900iA/260L	M-900iA/260L	
FANUC Robot M-900iA/350	M-900iA/350	
FANUC Robot M-900iA/150P	M-900iA/150P	M-900 <i>i</i> A
FANUC Robot M-900iA/200P	M-900iA/200P	W-900/A
FANUC Robot M-900iA/400L	M-900iA/400L	
FANUC Robot M-900iA/600	M-900iA/600	
FANUC Robot M-900iB/280	M-900iB/280	
FANUC Robot M-900iB/360	M-900iB/360	
FANUC Robot M-900iB/700	M-900iB/700	M-900 <i>i</i> B
FANUC Robot M-900iB/400L	M-900iB/400L	
FANUC Robot M-900iB/280L	M-900iB/280L	
FANUC Robot M-2000iA/900L	M-2000iA/900L	
FANUC Robot M-2000iA/1200	M-2000iA/1200	M-2000 <i>i</i> A
FANUC Robot M-2000iA/1700L	M-2000iA/1700L	WI-2000/A
FANUC Robot M-2000iA/2300	M-2000iA/2300	
FANUC Robot F-200iB	F-200 <i>i</i> B	
FANUC Robot CR-35iA	CR-35 <i>i</i> A	

TABLE OF CONTENTS

SA	FETY F	PRECAUTIONS	s-1
PR	EFACE		p-1
I.	MAINT	TENANCE	
1	OVEF	RVIEW	3
2	CONF	FIGURATION	4
	2.1	EXTERNAL VIEW OF THE CONTROLLER	
	2.2	COMPONENT FUNCTIONS	
	2.3	PREVENTIVE MAINTENANCE	
3	TROI	JBLESHOOTING	12
	3.1	POWER CANNOT BE TURNED ON	
	3.1	ALARM OCCURRENCE SCREEN	
	3.3	STOP SIGNALS	
	3.4	MASTERING	
	3.4	TROUBLESHOOTING USING THE ERROR CODE	_
	3.6	FUSE-BASED TROUBLESHOOTING	
	3.7	TROUBLESHOOTING BASED ON LED INDICATIONS	
	3.7	3.7.1 Troubleshooting Using the LEDS on the Main Board	
		3.7.2 Troubleshooting by LEDs on Power Supply Unit	
		3.7.3 Troubleshooting by LED on the Emergency Stop Board	84
		3.7.4 Troubleshooting by Alarm LEDs on the Process I/O Board	86
		3.7.5 Troubleshooting by LEDs on the 6-Axis Servo Amplifier	
		3.7.6 Troubleshooting by LEDs on the αiPS	
	2.0	3.7.7 Troubleshooting by LEDs on the sensor I/F unit for CR-35iA	
	3.8	MANUAL OPERATION IMPOSSIBLELEDS ON UNITS SUPPORTING I/O LINK i	
	3.9	3.9.1 Meanings of LEDs on Units Supporting I/O Link <i>i</i>	
4	DDIN	TED CIRCUIT BOARDS	
4			96
	4.1	MAIN BOARD	96
	4.2	EMERGENCY STOP BOARD	00
	4.0	A-cabinet:A20B-2200-0650/B-cabinet:A20B-2102-0050	
	4.3	BACKPLANE	
	4.4	PROCESS I/O BOARD JA (A16B-2204-0010)	
	4.5	PROCESS I/O BOARD JB (A16B-2204-0011)	
	4.6	PROCESS I/O BOARD MA (A20B-2004-0380)	
	4.7	PROCESS I/O BOARD MB (A20B-2101-0730)	
	4.8	PROCESS I/O BOARD KA (A20B-2101-0560)	
	4.9	PROCESS I/O BOARD KB (A20B-2101-0561)	
5		S SERVO AMPLIFIERS	
	5.1	LEDS OF SERVO AMPLIFIER	
	5.2	SETTING OF 6-AXIS SERVO AMPLIFIER	113

	5.3	6-AXIS SERVO AMPLIFIER SPECIFICATIONS	114
6	POW	/ER SUPPLY	115
	6.1	BLOCK DIAGRAM OF THE POWER SUPPLY	
	6.2	TRANSFORMER	
	6.3	CHECKING THE POWER SUPPLY UNIT (A16B-2203-0910)	118
7	SEN	SOR I/F UNIT FOR CR-35 <i>i</i> A	119
8	REP	LACING UNITS	120
•	8.1	REPLACING THE PRINTED-CIRCUIT BOARDS	
		8.1.1 Replacing the Backplane Board (Unit)	
		8.1.2 Replacing the Power Unit and Printed-Circuit Boards on the Backplane	
	8.2	REPLACING CARDS AND MODULES ON THE MAIN BOARD	
	8.3	REPLACING THE E-STOP UNIT	
	8.4	REPLACING THE EMERGENCY STOP BOARD	
	8.5	REPLACING THE TRANSFORMER	_
	8.6	REPLACING THE REGENERATIVE RESISTOR UNIT	
	8.7	REPLACING SERVO AMPLIFIERS	
	8.8	REPLACING I/O UNIT-MODEL A	
		8.8.1 Replacing the Base Unit of I/O Unit-MODEL A	139
	8.9	REPLACING THE TEACH PENDANT	
	8.10	REPLACING THE CONTROL SECTION FAN MOTOR	
	8.11	REPLACING THE AC FAN MOTOR	
		8.11.1 Replacing the Heat Exchanger and Door Fan Unit (A-cabinet)	
		8.11.2 Replacing Rear Fan Unit (A-cabinet)	143
		8.11.3 Replacing External Fan Unit and Door Fan (B-cabinet)	
	8.12	REPLACING BATTERY	
		8.12.1 Battery for Memory Backup (3 VDC)	143
II.	CONI	NECTIONS	
1	GEN	ERAL	149
2	BLO	CK DIAGRAM	150
3	FLF	CTRICAL CONNECTIONS	151
	3.1	CONNECTION DIAGRAM BETWEEN MECHANICAL UNITS	
	3.2	FANUC I/O LINK	
	0.2	3.2.1 Connection of I/O Link	
		3.2.2 Connection of the I/O Link Cable	
	3.3	EXTERNAL CABLE WIRING DIAGRAM	
		3.3.1 Robot Connection Cables	
		3.3.2 Teach Pendant Cable3.3.3 Connecting the Input Power	
		3.3.3.1 Connecting the input power cable	
		3.3.3.2 Leakage breaker	165
		3.3.3.3 Check input voltage	
		3.3.4 On/off timing by the breaker	
		5.5.7 Connecting the External Fower Supply On/Off Switch	100

		3.3.5	Connecting the External Emergency Stop.	
		3.3.6	Connecting the Non-Teaching Enabling (NTED) Signal (CRMA96)(For B-	
		3.3.7	Connecting the Auxiliary Axis Brake (CRR65 A/B)	
		3.3.8	Connecting the Auxiliary Axis Over Travel (CRM68)	179
1	PERI	PHER	AL DEVICE, ARC WELDING, AND END EE INTERFAC	ES
	4.1		PHERAL DEVICE INTERFACE BLOCK DIAGRAM	
		4.1.1	When Process I/O Board JA/JB is Used (B-cabinet)	
		4.1.2	When Process I/O Board MA is Used (A-cabinet)	
		4.1.3	When Process I/O Board MB is Used (A-cabinet)	
		4.1.4	When Process I/O Board KA/KB is Used (A-cabinet)	
		4.1.5	When I/O Unit-MODEL A is Used	
			4.1.5.1 In case of A-cabinet	
		4.1.6	When Two or More Process I/O Board and I/O Unit-MODEL A are Used	
		1.1.0	4.1.6.1 In case of B-cabinet	
	4.2	PROC	CESS I/O BOARD SIGNALS	188
	4.3		RFACE FOR PERIPHERAL DEVICES	
		4.3.1	Peripheral Device and Controller Connection	
			(Source Type DO)	191
		4.3.2	Connection between the Process I/O Board MA and Peripheral Devices	
	4.4	INTER	RFACE FOR WELDER	
		4.4.1	Connection between the Process I/O Board MB and Welding Machines	
		4.4.2	Connection between the Process I/O Board KA, KB and Welding Machines	
	4.5	EE IN	TERFACE	213
		4.5.1	Connection between the Mechanical Unit and End Effector	
	4.6	DIGIT	AL I/O SIGNAL SPECIFICATIONS	
		4.6.1	Peripheral Device Interface A	
		4.6.2	EE Interface	
		4.6.3	I/O Signal Specifications for ARC-Welding Interface (A-cabinet/Process I/O	
			MB)	
	4.7	SPEC	IFICATIONS OF THE CABLES USED FOR PERIPHERAL DEVI	CES
		AND V	WELDERS	221
		4.7.1	Peripheral Device Interface A Cable (CRMA5*: Honda Tsushin, 50 pins)	
		4.7.2	Peripheral Device Interface B Cable (CRMA6*: Honda Tsushin, 20 pins)	
		4.7.3	Peripheral Device Interface B1 and B2 Cables (CRMA52; TE Connectivity	
				222
		4.7.4	ARC Weld Connection Cables (CRW11; TE Connectivity 20 pin)	222
	4.8	CABL	E CONNECTION FOR THE PERIPHERAL DEVICES, END	
		EFFE(CTORS, AND ARC WELDERS	223
		4.8.1	Peripheral Device Connection Cable	
		4.8.2	Peripheral Device Cable Connector	
		4.8.3	End Effector Cable Connector (EE interface)	228
		4.8.4	Recommended Cables	229
	4.9	CONN	NECTION OF HDI	230
		4.9.1	Connecting HDI	230
		4.9.2	Input Signal Rules for the High-speed Skip (HDI)	232
	4.10	CONN	NECTING THE COMMUNICATION UNIT	233
		4.10.1	RS-232-C Interface	
			4.10.1.1 Interface	
			4.10.1.2 RS-232-C interface signals	233

	4.11	4.10.1.3 Connection between RS-232-C interface and I/O device	235 236 237 237 237 239 243
5	TRAN	ISPORTATION AND INSTALLATION	245
•	5.1	TRANSPORTATION	
	5.2	INSTALLATION	246
		5.2.1 Installation Method	246
		5.2.2 Assemble at Installation	
	5.3	INSTALLATION CONDITION	
	5.4	ADJUSTMENT AND CHECKS AT INSTALLATION	
	5.5	RESETTING OVERTRAVEL AND EMERGENCY STOP AT INSTA	LLATION
		5.5.1 Peripheral Device Interface Processing	
		5.5.2 Resetting Overtravel	
		5.5.4 How to Disable/Enable Pneumatic Pressure Alarm (PPABN)	
A B C	TOTA	CIFICATION LIST AL CONNECTION DIAGRAM CIFICATIONS OF PERIPHERAL DEVICE INTERFACE SIGNAL SETTING COMMON VOLTAGE	313 313 314 315
	C.4	C.3.1 Input Signals C.3.2 Output Signals SPECIFICATIONS OF DIGITAL INPUT/OUTPUT	318
	C.4	C.3.2 Output Signals	318 321 321
D		C.3.2 Output Signals SPECIFICATIONS OF DIGITAL INPUT/OUTPUT C.4.1 Overview C.4.2 Input/Output Hardware Usable in the R-30 <i>i</i> B Controller	318 321 321 321 322
D E	OPTIO	C.3.2 Output Signals SPECIFICATIONS OF DIGITAL INPUT/OUTPUT C.4.1 Overview C.4.2 Input/Output Hardware Usable in the R-30 <i>i</i> B Controller C.4.3 Software Specifications	318321321322323
	OPTIO	C.3.2 Output Signals	318321321321322323
	OPTI BRA	C.3.2 Output Signals SPECIFICATIONS OF DIGITAL INPUT/OUTPUT	318321321322323326
	OPTION BRANCE.1	C.3.2 Output Signals SPECIFICATIONS OF DIGITAL INPUT/OUTPUT	318321321322323326326326
	OPTION BRANCE.1	C.3.2 Output Signals SPECIFICATIONS OF DIGITAL INPUT/OUTPUT C.4.1 Overview C.4.2 Input/Output Hardware Usable in the R-30iB Controller C.4.3 Software Specifications CAL FIBER CABLE (E RELEASE UNIT SAFETY PRECAUTIONS CONFIRMATIONS BEFORE OPERATION OPERATION E.3.1 In Case of Operating to the Robot	318321321322323326326326327
	OPTION BRANCE.1 E.2 E.3	C.3.2 Output Signals SPECIFICATIONS OF DIGITAL INPUT/OUTPUT C.4.1 Overview C.4.2 Input/Output Hardware Usable in the R-30iB Controller C.4.3 Software Specifications CAL FIBER CABLE (E RELEASE UNIT SAFETY PRECAUTIONS CONFIRMATIONS BEFORE OPERATION OPERATION. E.3.1 In Case of Operating to the Robot E.3.2 In Case of Operating to the Auxiliary Axis	318321321322323326326326327327
	OPTION BRANCE.1	C.3.2 Output Signals SPECIFICATIONS OF DIGITAL INPUT/OUTPUT C.4.1 Overview C.4.2 Input/Output Hardware Usable in the R-30iB Controller C.4.3 Software Specifications CAL FIBER CABLE (E RELEASE UNIT SAFETY PRECAUTIONS CONFIRMATIONS BEFORE OPERATION OPERATION E.3.1 In Case of Operating to the Robot	318321321322323326326326327327329 SE OF NO

	E.6 E.7	FUSESPECIFICATIONS	
F		TO USE THE PLATE TO FIX THE COMPACT FLASH MEI	
G	THE	CONTROLLER FOR M-900 <i>i</i> A/200P, M-2000 <i>i</i> A	337
	G.1	CONFIGURATION	337
	G.2	TROUBLESHOOTING USING THE ALARM CODE	
		G.2.1 Troubleshooting Using the Alarm Code	
		G.2.2 Alarms Detected by Servo Amplifier G.2.3 Relationship of Axis	
	G.3	INSTALLING THE CONNECTION CABLE BETWEEN CABINETS	
	G.4	ROBOT CONNECTION CABLE	342
	G.5	CONNECTING THE INPUT POWER CABLE	
	G.6	CONFIRMATIONS OF ON/OFF BY THE BREAKER FOR M-900iA/2	,
		M-2000 <i>i</i> A	
	G.7	TOTAL CONNECTION DIAGRAM	347
Н	INST	RUCTION FOR STACKING A-CABINET	379
ı	TEAG	CH PENDANT DISCONNECT FUNCTION (OPTION)	380
	I.1	CONFIGURATION	
	1.2	PROCEDURE OF TEACH PENDANT DISCONNECT	
		I.2.1 Teach Pendant Disconnect	
		I.2.2 Teach Pendant Connect	
J	INST	RUCTION FOR TERMINAL BLOCK	382
Κ	SEAI	LING OF THE CABLE ENTRANCE OF THE CABINET	384
	K.1	CABLE ENTRANCE FOR A-CABINET	
	K.2	HOLES OF CABLE SEAL BLOCK FOR CABLE	385
	K.3	SUITABLE CABLE DIAMETER	386
	K.4	ADJUST THE CABLE DIAMETER	386
L	REPI	LACING THE PROTECTION SHEET	387

I. MAINTENANCE	

OVERVIEW

This manual is applied to R-30*i*B controller (called R-30*i*B).

R-30*i*B has three variations depending on the required standards.

Basic controller: To meet Safety Standard and General electrical requirement

CE controller: To meet Machinery Directive, Low voltage Directive, EMC Directive to cover

the requirement of CE mark

NRTL controller: To meet UL/CSA standard

CE/NRTL controller: To meet both CE standard and UL/CSA standard.

This manual covers these three variations of R-30*i*B.

The difference of NRTL and CE controller from Basic controller is small as shown in Table 1 (ex. EMC parts, Breakers).

And the specific descriptions of CE and NRTL controller have notifications in this manual.

Table 1. Applied standards

	Common Standard	EMC Standard	UL/CSA Standard	Requirement	Difference
Basic controller	ISO 10218-1 ISO 13849-1 IEC 60204-1 IEC 61508	-	-	Safety Standard General electrical requirement	-
CE controller		EN 55011 EN 61000-6-2 EN 61000-6-4	-	CE Marking •Europe	Noise filter EMC Cabinet Shielded cable
NRTL controller		-	UL1740 CAN/CSA Z434 NFPA79	UL standard CSA standard •USA and Canada	UL listed main breaker E-stop unit with UL listed breaker 600V input circuit for Canada
CE/NRTL controller		EN 55011 EN 61000-6-2 EN 61000-6-4	UL1740 CAN/CSA Z434 NFPA79	CE Marking •Europe UL standard CSA standard •USA and Canada	Noise filter EMC Cabinet Shielded cable UL listed main breaker E-stop unit with UL listed breaker 600V input circuit for Canada can not be supported.

This manual describes the maintenance and connection of R-30*i*B.

· Maintenance Part: Troubleshooting, and the setting, adjustment, and replacement of units

·Connection Part: Connection of R-30*i*B to the robot mechanical unit and peripheral devices, and

installation of the controller

⚠ WARNING

Before you enter the robot working area, be sure to turn off the power to the controller or press the EMERGENCY STOP button on the operator's panel or teach pendant.

Otherwise, you could injure personnel or damage equipment.

2 CONFIGURATION

2.1 EXTERNAL VIEW OF THE CONTROLLER

The appearance and components might slightly differ depending on the controlled robot, application, and options used.

Fig.2.1 (a) shows the view of R-30*i*B.

Fig.2.1 (b) to (g) show the construction of the R-30*i*B controller.

Fig.2.1 (h) to (k) show the external view of the operator's panel and teach pendant.

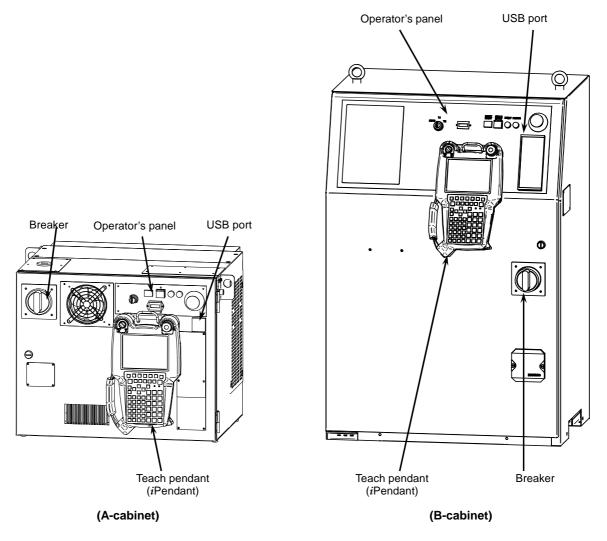


Fig.2.1 (a) External view of the R-30iB controller

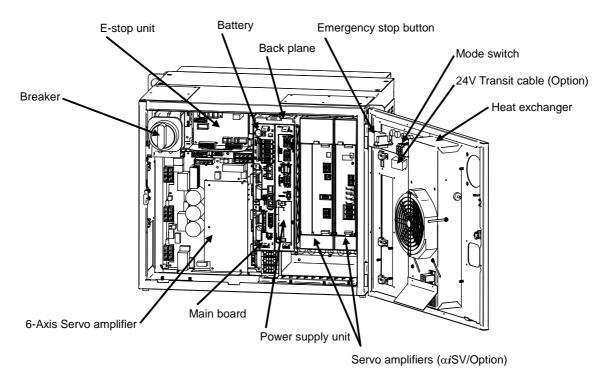


Fig.2.1 (b) R-30iB A-cabinet interior (Front)

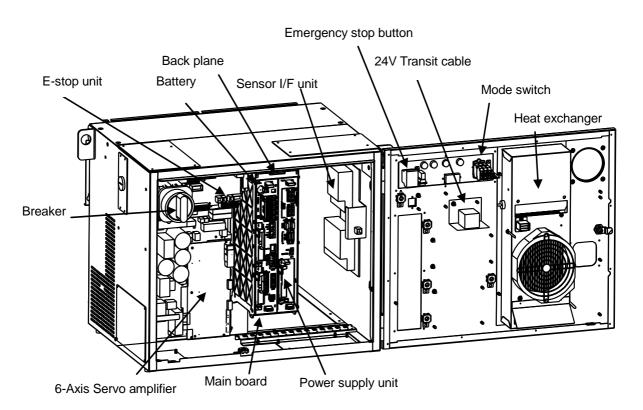


Fig.2.1 (c) R-30iB A-cabinet interior (Front) (CR-35iA)

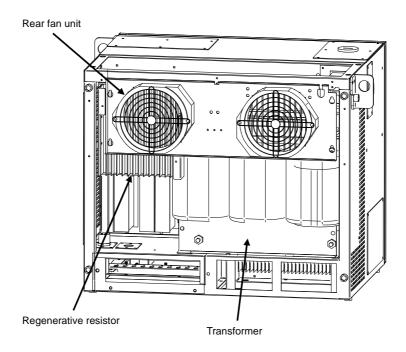


Fig.2.1 (d) R-30iB A-cabinet interior (Rear)

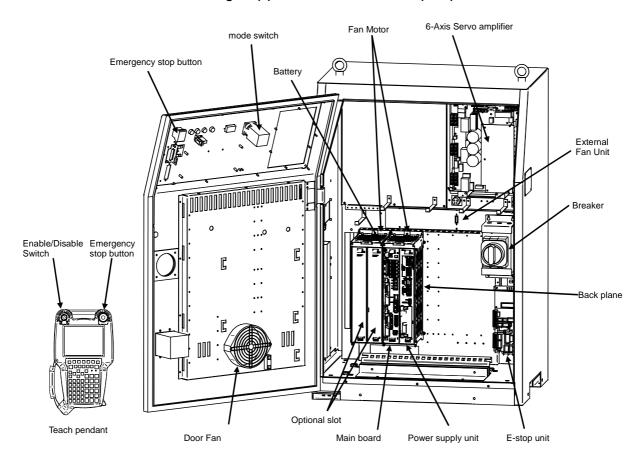


Fig.2.1 (e) R-30iB B-cabinet interior (Front)

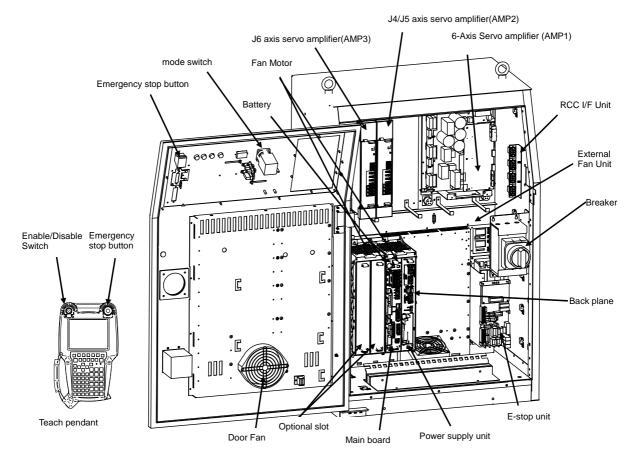


Fig.2.1 (f) R-30iB B-cabinet interior (Front) (M-900 iA/400L, M-900 iA/600, M-900 iB/700, M-900 iB/400L)

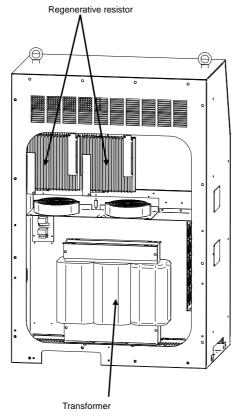


Fig.2.1 (g) R-30iB B-cabinet interior (Rear)

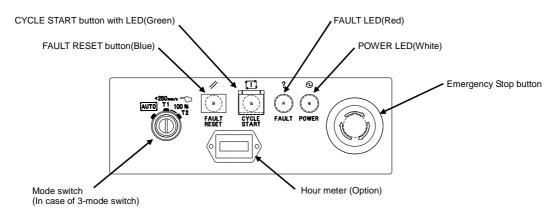


Fig.2.1 (h) R-30iB A-cabinet operator's panel

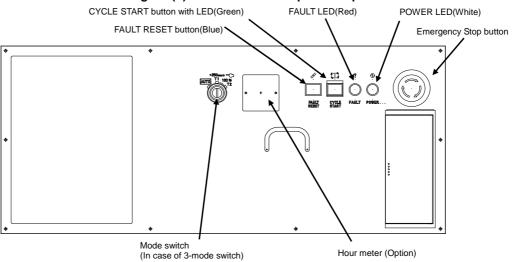


Fig.2.1 (i) R-30iB B-cabinet operator's panel

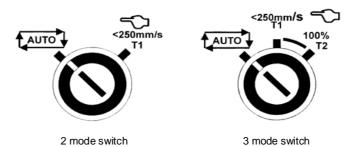


Fig.2.1 (j) Mode switch

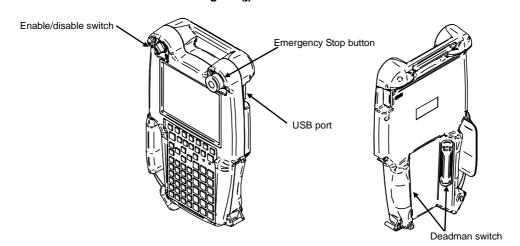


Fig.2.1 (k) Teach pendant (iPendant)

2.2 COMPONENT FUNCTIONS

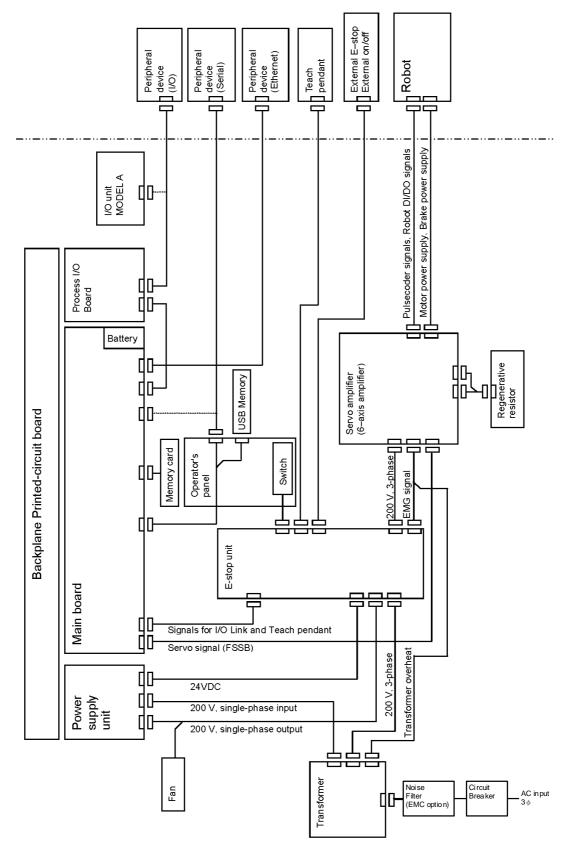


Fig.2.2 Block diagram of the R-30iB

- Main board

The main board contains a microprocessor, its peripheral circuits, memory, and operator's panel control circuit. The main CPU controls servo mechanism positioning.

- I/O printed circuit board, FANUC I/O Unit MODEL-A

Various types of printed circuit boards are provided for applications including process I/O board. The FANUC I/O unit MODEL-A can also be installed. When it is used, various I/O types can be selected. These are connected with FANUC I/O Link.

- E-stop unit

This unit controls the emergency stop system of the robot controller. It also has user interface terminals of safety relevant signals, external on/off signals etc.

- Power supply unit

The power supply unit converts the AC power to various levels of DC power.

- Backplane printed circuit board

The various control printed circuit boards are mounted on the backplane printed circuit board.

- Teach pendant

All operations including robot programming are performed with this unit. The controller status and data are indicated on the liquid-crystal display (LCD) on the pendant.

- 6-Axis Servo amplifier

The servo amplifier controls servomotor, Pulsecoder signal, brake control, overtravel and hand broken.

- Operator's panel

Buttons and LEDs on the operator's panel are used to start the robot and to indicate the robot status. The panel has an USB interface for the serial interface to an external device.

- Transformer

The supply voltage is converted to an AC voltage required for the controller by the transformer.

- Fan unit, heat exchanger

These components cool the inside of the controller.

- Circuit breaker

If the electric system in the controller malfunctions, or if abnormal input power causes high current in the system, the input power is connected to the circuit breaker to protect the equipment.

- Regenerative resistor

To discharge the counter electromotive force from the servomotor, connect a regenerative resistor to the servo amplifier.

2.3 PREVENTIVE MAINTENANCE

Daily maintenance and periodic maintenance/inspection ensure reliable robot performance for extended periods of time.

(1) Daily maintenance

Before operating the system each day, clean each part of the system and check the system parts for any damage or cracks. Also, check the following:

(a) Before operation

Check the cable connected to the teach pendant for excessive twisting. Check the controller and peripheral devices for abnormalities.

(b) After operation

At the end of operation, return the robot to the specified position, and then turn off the controller. Clean each part, and check for any damage or cracks. If the ventilation port of the controller is dusty, clean it.

(2) Check after one month

Check that the fan is rotating normally. If the fan has dirt and dust built up, clean the fan according to step (d) described below for inspection to be performed every 6 months.

(3) Periodic inspection performed every six months

Please refer to the Section 7.5, and then remove any dirt and dust from the inside of the transformer compartment. Wipe off dirt and dust from the fan and transformer.

(4) Battery daily check

Replace the battery on the front panel of the main board every 4 years. Please refer to the Section 7.12.

(5) Maintenance tools

The following maintenance tools are recommended:

(a) Measuring instruments

AC/DC voltmeter (A digital voltmeter is sometimes required.)

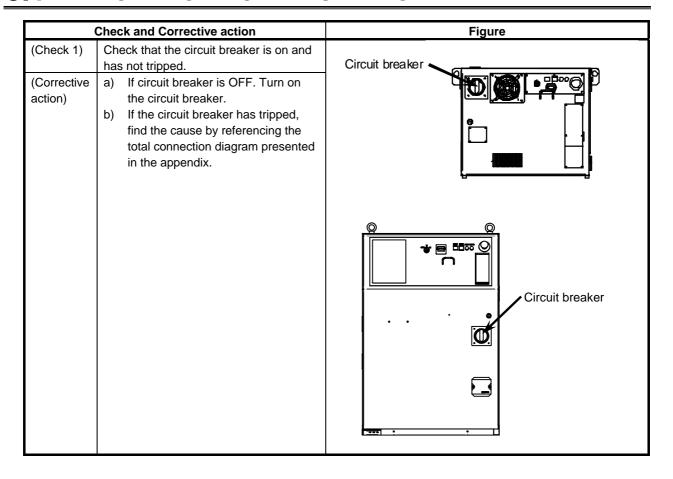
Oscilloscope with a frequency range of 5 MHz or higher, two channels

(b) Tools

Cross-head screwdrivers: Large, medium, and small Large, medium, and small

Nut driver set (Metric)

Pliers


Needle-nose pliers

Diagonal cutting pliers

3 TROUBLESHOOTING

This chapter describes the checking method and corrective action for each alarm code indicated if a hardware alarm occurs. Refer to the R-30*i*B/R-30*i*B Mate OPERATOR'S MANUAL (ALARM CODE LIST) (B-83284EN-1) to release program alarms.

3.1 POWER CANNOT BE TURNED ON

	Check and Corrective action	Figure
(Check 2)	Check whether the LED (ALM: red) on the power supply unit is on.	DB1: Diode stack
(Corrective action 1)	If the LED (ALM:red) on the power supply unit is off, see Check 3.	F1(8.0A): Fuse for AC input CP1: Connector for AC input
	If the LED (ALM:red) on the power supply unit is on, verify that the +24V external connection cable is not connected to 0V or ground.	CP1A: Connector for AC output CP2, CP3: Connector for AC output CP2, CP3: Connector for AC output F3(7.5A): Fuse for +24E F4(7.5A): Fuse for +24V PIL: LED (green) CP5: Connector for +24E
	If the problem still exists even though it does not have ground fault, check the power supply unit using the following procedure:	CP6: Connector for +24V ALM: LED (red) CP4: Connector for control
	a) Check Fuse F4. If the fuse is blown, see Corrective action 4. b) Fuse F4 is not blown. The power supply unit, main board or process I/O printed circuit board	
	may be faulty. c) Replace the power supply unit. d) If a system using the process I/O printed circuit board, replace the	
	process I/O printed circuit board. e) See Corrective action 3.	
(Corrective action 2)	If the power supply unit is not faulty, replace the emergency stop board.	
(Corrective action 3)	Before executing this action, perform a complete controller back up to save all your programs and settings.	
	If the emergency stop board is not faulty, replace the Main board.	
(Corrective action 4)	Causes of blown fuse F4 and corrective action.	
	The device connected to connector CP5 of the power supply unit may be faulty.	
	Find the cause by referencing the total connection diagram presented in the appendix.	
	If no device is connected to CP5 or the connected device is normal, the +24 V power used in a printed circuit board connected to the backplane is faulty.	
	See Corrective action 3.	

	Check and Corrective action	Figure
(Check 3)	Check whether the LED (PIL: green) on	
	the power supply unit is on.	DD4. Diada atask
(Corrective	If the LED (PIL: green) is on, - See	DB1: Diode stack
action1)	Corrective action 3.	F1(8.0A): Fuse for AC input
	If the LED (PIL: green) is not on, 200 VAC is not supplied to the power supply unit. Check whether 200 VAC is supplied to power supply unit. Check the voltage between the 1 pin and 2 pin of the CP1 connector.	VS1: Surge absorber H1: Auxiliary power module CP1: Connector for AC output CP2, CP3: Connector for AC output F3(7.5A): Fuse for +24E F4(7.5A): Fuse for +24V PIL: LED (green) CP5: Connector for +24E CP6: Connector for +24V
	If 200 VAC is not supplied, Check the primary input voltage to the controller is within the rated voltage and phase of the primary input voltage is not lack. If there is no problem, the fuse in the transformer may have blown.	ALM: LED (red) CP4: Connector for control
	Before you start to replace the transformer, turn off the circuit breaker. Replace the transformer.	
	If 200 VAC is supplied, It is likely that fuse F1 in the power supply unit has blown. Find the cause of the blown fuse.	
	Before you start troubleshooting, turn off the circuit breaker. a) If fuse F1 has blown, see Corrective action 2. b) If fuse F1 has not blown, Replace the power supply unit.	
(Corrective	Causes of blown fuses F1 and	
action 2)	corrective action a) Check the units (fans), printed-circuit board and cables connected to the CP2 and CP3 connectors of the power supply unit to see if there is any short circuit. b) Replace the power supply unit.	

(Corrective action 3) Check whether the connector (JRS19) on the main board or the connector (JRS19) on the main board or the connector (JRS19) on the main board is connected properly. (Corrective action4) EXOFF11 signals are connected on the terminal block on the emergency stop board. If the external ON/OFF switch is used, verifying that the ON/OFF switch is tunctioning properly. a) If the external ON/OFF function is not used, connect terminal EXOFF1 and EXOFF11. b) If the external ON and OFF lines are already used, check the mating contacts and the cable. (Corrective action 5) Check whether the jumper connector of the CRMA93 is connected to the emergency stop board. TBOPH TBO		Check and Corrective action	Figure
action 3) on the main board or the connector (JRS19 or JRS20) on the emergency stop board is connected properly. (Corrective action4) EXOFF11 signals are connected on the terminal block on the emergency stop board. If the external ON/OFF switch is functioning properly. a) If the external ON/OFF function is not used, connect terminal EXOFF1 and EXOFF1. b) If the external ON and OFF lines are already used, check the mating contacts and the cable. (Corrective action 5) Check whether the jumper connector of the CRMA93 is connected to the emergency stop board.			1.1941.0
((JRS19 or JRS20) on the emergency stop board is connected properly. Check whether the EXOFF1 and EXOFF1 signals are connected on the terminal block on the emergency stop board. If the external ON/OFF switch is used, verifying that the ON/OFF switch is functioning properly. a) If the external ON/OFF switch is not used, connect terminal EXOFF1 and EXOFF1. b) If the external ON and OFF lines are already used, check the mating contacts and the cable. Corrective action 5) Check whether the jumper connector of the CRMA93 is connected to the emergency stop board.		, ,	JRS20
(Corrective action 5)	,	(JRS19 or JRS20) on the emergency	
action4) EXOFF11 signals are connected on the terminal block on the emergency stop board. If the external ON/OFF switch is functioning properly. a) If the external ON/OFF function is not used, connect terminal EXOFF1 and EXOFF11. b) If the external ON and OFF lines are already used, check the mating contacts and the cable. (Corrective Check whether the jumper connector of the CRMA93 is connected to the emergency stop board.			I I (; ;)
action4) EXOFF11 signals are connected on the terminal block on the emergency stop board. If the external ON/OFF switch is used, verifying that the ON/OFF switch is functioning properly. a) If the external ON/OFF function is not used, connect terminal EXOFF1 and EXOFF11. b) If the external ON and OFF lines are already used, check the mating contacts and the cable. (Corrective action 5) Check whether the jumper connector of the CRMA93 is connected to the emergency stop board. (Academic Academic Ac	(Corrective	Check whether the EXOFF1 and	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
board. If the external ON/OFF switch is used, verifying that the ON/OFF switch is functioning properly. a) If the external ON/OFF function is not used, connect terminal EXOFF1 and EXOFF11. b) If the external ON and OFF lines are already used, check the mating contacts and the cable. (Corrective action 5) Check whether the jumper connector of the CRMA93 is connected to the emergency stop board.	action4)		
used, verifying that the ON/OFF switch is functioning properly. a) If the external ON/OFF function is not used, connect terminal EXOFF1 and EXOFF11. b) If the external ON and OFF lines are already used, check the mating contacts and the cable. (Corrective action 5) Check whether the jumper connector of the CRMA93 is connected to the emergency stop board.			I SE
is functioning properly. a) If the external ON/OFF function is not used, connect terminal EXOFF1 and EXOFF1 and EXOFF1 and EXOFF1 and external ON and OFF lines are already used, check the mating contacts and the cable. (Corrective action 5) Check whether the jumper connector of the CRMA93 is connected to the emergency stop board. TBOP11 13EXOFF1 TBOP14 TBOP11 TBOP11 TBOP15 TBOP11 TBOP17 TBOP17 TBOP17 TBOP17 TBOP18 TBOP19 TBOP			l c -
a) If the external ON/OFF function is not used, connect terminal EXOFF1 and EXOFF11. b) If the external ON and OFF lines are already used, check the mating contacts and the cable. (Corrective action 5) Check whether the jumper connector of the CRMA93 is connected to the emergency stop board. (Corrective action 5) TBOP11 14:EXOFF11 TBOP11 15:EXOFF11 TBOP11 TBOP11			# ²⁶
not used, connect terminal EXOFF1 and EXOFF1. b) If the external ON and OFF lines are already used, check the mating contacts and the cable. (Corrective action 5) Check whether the jumper connector of the CRMA93 is connected to the emergency stop board. (Corrective action 5) TBOPH 13.EXOFF1 TBOPH 13.EXOFF1 TBOPH 14.EXOFF1 TBOPH 15.EXOFF1 TBOPH 15.EXOFF1 TBOPH 16.EXOFF1 TBOPH 16.EXOFF1 TBOPH 17.EXOFF1 TBOPH 18.EXOFF1		is full clioning property.	CR\$36 OR934
not used, connect terminal EXOFF1 and EXOFF1. b) If the external ON and OFF lines are already used, check the mating contacts and the cable. (Corrective action 5) Check whether the jumper connector of the CRMA93 is connected to the emergency stop board. (Corrective action 5) TBOPH 13.EXOFF1 TBOPH 13.EXOFF1 TBOPH 14.EXOFF1 TBOPH 15.EXOFF1 TBOPH 15.EXOFF1 TBOPH 16.EXOFF1 TBOPH 16.EXOFF1 TBOPH 17.EXOFF1 TBOPH 18.EXOFF1		a) If the external ON/OFF function is	SE
and EXOFF11. b) If the external ON and OFF lines are already used, check the mating contacts and the cable. (Corrective action 5) (Check whether the jumper connector of the CRMA93 is connected to the emergency stop board. (Table 1) (Table 2) (Table 3) (Table 3) (Table 3) (Table 4) (Table 5) (Table 4) (Table 5) (Table 4) (Tabl		,	The second of th
b) If the external ON and OFF lines are already used, check the mating contacts and the cable. (Corrective action 5) (Check whether the jumper connector of the CRMA93 is connected to the emergency stop board. (Table 1) (Table 2) (Corrective action 5) (Check whether the jumper connector of the CRMA93 is connected to the emergency stop board. (Table 2) (Table 3) (Table 4) (Table 5) (Table 4) (T			CRI27
are already used, check the mating contacts and the cable. (Corrective action 5) Check whether the jumper connector of the CRMA93 is connected to the emergency stop board. **TBOP11** **TBOP14**			CRMA92 CRMC5
Contacts and the cable. (Corrective action 5) Check whether the jumper connector of the CRMA93 is connected to the emergency stop board. (Corrective action 5) TROP11 13.EXOFF1 A-cabinet TROP11 13.EXOFF1 CRMA93 TROP11 TROP12 TROP12 TROP12 TROP12 TROP13 TR		b) If the external ON and OFF lines	
(Corrective action 5) Check whether the jumper connector of the CRMA93 is connected to the emergency stop board. TBOPH		are already used, check the mating	TBOP14
(Corrective action 5) Check whether the jumper connector of the CRMA93 is connected to the emergency stop board. A-cabinet TBOP11 14:EXOFF11 TBOP11 13:EXOFF1 CRMA93 CRMA94 C		contacts and the cable.	'
(Corrective action 5) Check whether the jumper connector of the CRMA93 is connected to the emergency stop board. A-cabinet TBOP11 14:EXOFF11 TBOP11 13:EXOFF1 CRMA93 CRMA94 C			
(Corrective action 5) Check whether the jumper connector of the CRMA93 is connected to the emergency stop board. A-cabinet TBOP11 14:EXOFF11 TBOP11 13:EXOFF1 CRMA93 CRMA94 C			
action 5) the CRMA93 is connected to the emergency stop board. TBOP11 14-EXOFF11 TROP11 TROP11 TROP11 TROP11 TROP11 TROP11 TROP11 TROP11 TROP12 TROP13 TR	(Corrective	Check whether the jumper connector of	12:EXOFF11 /
emergency stop board. TBOP11 14-EXOFF11 TBOP11 13-EXOFF1 TBOP11			A-cabinet
TBOP11 14:EXOFF11 13:EXOFF1 CRMA93	,		
TBOP11 14:EXOFF11 13:EXOFF1 13:EXOFF1 CRMA93 CRMA9			
TISTEXOFF1 13:EXOFF1 CRMA93			
TISTEXOFF1 13:EXOFF1 CRMA93			Į
TISTEXOFF1 13:EXOFF1 CRMA93			020
TISTEXOFF1 13:EXOFF1 CRMA93			TBOP11 ਹੈ
TISTEXOFF1 13:EXOFF1 CRMA93			14:EXOFF11, \
JRS19 13:EXOFF1 CRMA93 CRMA94 CRMA94 CRMA94 CRMA94 CRMA94 CRMA94 CRMA95 CRMA			
13:EXOFF1 CRMA93 CRM			
13:EXOFF1 13:EXOFF1 CRMA93 CRMA93 CRMA93 CRMA93 CRMA93 CRMA92 CRMA92 CRMA92 CRMA92 CRMA92 CRMA92 CRMA92 CRMA92 CRMA92 CRMA93 CRMA92 CRMA93 CRMA92 CRMA93			JRS19
13:EXOFF1 CRMA93 CRMA83 CRMA83 CRMA83 CRMA83 CRMA83 CRMA93 CRMA92 CRM			
13:EXOFF1 CRMA93 CRMA93 CRMA93 CRMA93 CRMA93 CRMA93 CRMA94 CRMA94 CRMA94 CRMA92 CRMA93 CRMA93 CRMA93 CRMA93 CRMA93 CRMA93 CRMA93 CRMA94 CRM			
CRMA93 CRMA93 CRMA93 CRMA93 CRMA93 CRMA94 CRMA94			CPMARS CRASS6
CRMA93 CRMA92 CPSA CP			09/453 CRHAS CRT27 07536
CRMA93 TEXT OF A TO THE STATE OF THE STATE			
CP2A			
CRMAB2 CPSA CPSA CPSA CNMC6 CN			CRMA93
CPSA			
S CNMC6 CNMC6 CNMC6 CNMC6 CNMC6 CNMC6 CNMC6 CNMC6 CNMC6			CP5A CP5A
THE STANDS OF TH			- an
DEMANSION OF DEMAN			
GR4496 €			
GR4496 €			CORPORATION OF THE PROPERTY OF
B-cabinet			CRMAGE E
			B-cabinet

3.2 ALARM OCCURRENCE SCREEN

The alarm occurrence screen displays only the alarm conditions that are currently active. If an alarm reset signal is input to reset the alarm conditions, the alarm occurrence screen displays the message "PAUSE or more serious alarm has not occurred."

The alarm occurrence screen displays only the alarm conditions (if any) that occur after the most recently entered alarm reset signal. To erase all alarm displays from the alarm occurrence screen. Press the CLEAR key (+ shift) on the alarm history screen.

The alarm occurrence screen is intended to display PAUSE or alarms that are more serious. It will not display WARN, NONE, or a reset. It is possible to disable PAUSE and some of more serious alarms from being displayed by setting the \$ER_NOHIS system variable appropriately.

If two or more alarms have occurred, the display begins with the most recent alarm.

Up to 100 lines can be displayed.

If an alarm has a cause code, it is displayed below the line indicating the alarm.

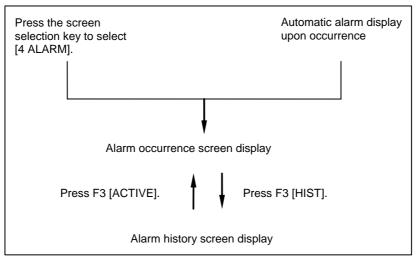
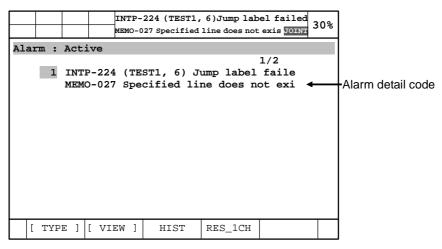


Fig.3.2 Alarm occurrence screen and alarm history screen display procedure


Displaying the alarm history/alarm detail information

Step

- (1) Press [MENU] key to display the screen menu.
- (2) Select [ALARM].

You will see a screen similar to the following.

If an alarm has occurred, however, the alarm screen appears automatically.

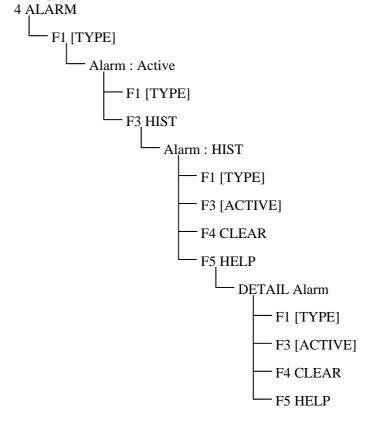
(3) To display the alarm history screen, press F3, [HIST]. Press F3 [ACTIVE] again, the alarm screen appears.

```
Alarm : Hist
                                      1/25
    1 INTP-224 (TEST1, 6) Jump label faile
     2 RESET
     3 SRVO-007 External emergency stop
     4 SRVO-001 Operator panel E-stop
     5 RESET
     6 SRVO-001 Operator panel E-stop
     7 SRVO-012 Power failure recovery
     8 INTP-127 Power fail detected
     9 SRVO-047 LVAL alarm (Group:1 Axis:5)
    10 SRVO-047 LVAL alarm (Group:1 Axis:4)
    11 SRVO-002 Teach pendant E-stop
  [ TYPE ]
            [ VIEW ]
                      ACTIVE
                               CLEAR
                                       DETAIL
```

NOTE

The latest alarm is assigned number 1. To view messages that are currently not on the screen, press the F5, HELP, and then press the right arrow key.

(4) To display the alarm detail screen, press F5, [HELP].


```
Alarm : Hist
    DETAIL Alarm
    INTP-224 (TEST1, 6) Jump label failed
    MEMO-027 Specified line does not exist
              21-NOV-11 12:16
    Alarm : Hist
     1 INTP-224 (TEST1, 6) Jump label faile
     2 R E S E T
     3 SRVO-007 External emergency stop
     4 SRVO-001 Operator panel E-stop
     5 R E S E T
     6 SRVO-001 Operator panel E-stop
     7 SRVO-012 Power failure recovery
    TYPE ] [ VIEW ]
                     ACTIVE
                               CLEAR
                                       DETAIL
```

- (5) To return to the alarm history screen, press the PREV key.
- (6) To delete all the alarm histories, press and hold down the SHIFT key, then press F4, [CLEAR].

NOTE

When system variable \$ER_NOHIS = 1, NONE alarms or WARN alarms are not recorded. When \$ER_NOHIS=2, resets are not recorded in the alarm history. When \$ER_NOHIS=3, resets, WARN alarms, and NONE alarms are not recorded.

The following map indicates teach pendant operations used to check an alarm.

3.3 STOP SIGNALS

The stop signal screen indicates the state of signals related to stop.

To be specific, the screen indicates whether each stop signal is currently on. On this screen, it is impossible to change the state of any stop signal.

Table 3.3 Stop signals

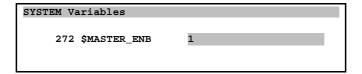
Stop signal	Description
Operator's panel	This item indicates the state of the emergency stop button on the operator's panel. If
emergency stop	the EMERGENCY STOP button is pressed, the state is indicated as "TRUE".
Teach pendant	This item indicates the state of the emergency stop button on the teach pendant. If the
emergency stop	EMERGENCY STOP button is pressed, the state is indicated as "TRUE".
External emergency stop	This item indicates the state of the external emergency stop signal. If the
	EMERGENCY STOP signal is asserted, the state is indicated as "TRUE".
Fence open	This item indicates the state of the safety fence. If the safety fence is open, the state is
	indicated as "TRUE".
DEADMAN switch	This item indicates whether the DEADMAN switch on the teach pendant is grasped. If
	the teach pendant is operable, and the DEADMAN switch is grasped correctly, the
	state is indicated as "TRUE". If the DEADMAN switch is released or is grasped tightly
	when the teach pendant is operable, an alarm occurs, causing the servo power to be
	switched off.
Teach pendant operable	This item indicates whether the teach pendant is operable. If the teach pendant is
	operable, the state is indicated as "TRUE".
Hand broken	This item indicates the state of the hand safety joint. If the hand interferes with a
	workpiece or anything like this, and the safety joint is opened, the state is indicated as
	"TRUE". In this case, an alarm occurs, causing the servo power to be switched off.
Robot overtravel	This item indicates whether the current position of the robot is out of the operation
	range. If any robot articulation goes out of the operation range beyond the overtravel
	switch, the state is indicated as "TRUE". In this case, an alarm occurs, causing the
	servo power to be switched off.
Abnormal air pressure	This item indicates the state of the air pressure. The abnormal air pressure signal is
	connected to the air pressure sensor. If the air pressure is not higher than the
	specified value, the state is indicated as "TRUE".

Step

- (1) Press [MENU] key to display the screen menu.
- (2) Select STATUS on the next page.
- (3) Press F1, [TYPE] to display the screen switching menu.
- (4) Select Stop Signal. You will see a screen similar to the following.

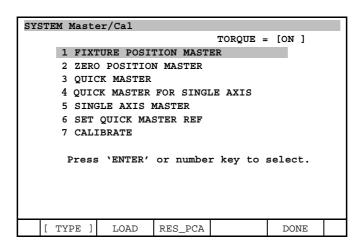
STATUS Stop Signal			
	SIGNAL NAME	STATUS	1/12
1	SOP E-Stop:	FALSE	
2	TP E-STOP:	FALSE	
3	EXT E-STOP:	FALSE	
4	Fence Open:	FALSE	
5	TP Deadman:	TRUE	
6	TP Enable:	TRUE	
7	Hand Broken:	FALSE	
8	Overtravel:	FALSE	
9	Low Air Alarm:	FALSE	
10	Belt Broken:	FALSE	
11	SVOFF Input:	FALSE	
12	Non Teacher En	b. Dev.: FALSE	
[TYP	E]		

3.4 MASTERING


Mastering is needed if:

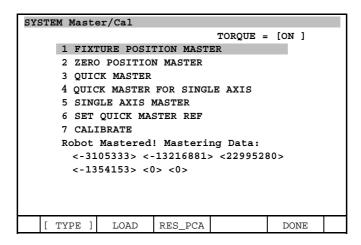
- (1) The SRVO-062 BZAL or SRVO-038 pulse mismatch alarm occurs, or
- (2) The Pulsecoder is replaced.

Item (1) requires quick mastering, while item (2) requires single axis or fixture position mastering. The mastering procedure is described below. For details, refer to an applicable maintenance manual of mechanical unit or Mastering chapter of the Appendix B of the R-30*i*B/R-30*i*B Mate OPERATOR'S MANUAL (BASIC OPERATION) (B-83284EN).

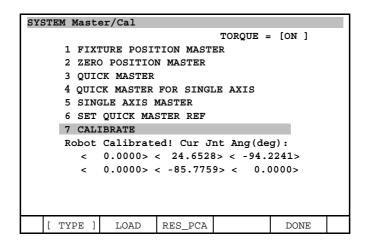

Condition

System variable \$MASTER_ENB must be set to 1 or 2.

Step


- (1) Press [MENU] key.
- (2) Select SYSTEM.
- (3) Press F1, TYPE.
- (4) Select Master/Cal you will see a screen similar to the following.
- (5) Move the robot by jog feed to the mastering position. Release the brake on the manual brake control screen if necessary.

NOTE


Mastering cannot be performed until axis is rotated enough to establish a pulse.

(6) Select "1 FIXTURE POSITION MASTER" and press the F4 key (yes). Mastering data is set.

(7) Select "7 CALIBRATE" and press the F4 key (yes). Calibration is performed.

Alternatively, to perform positioning, turn the power off, and then turn it on again. Calibration is performed whenever the power is turned on.

- (8) Press F5 "DONE", after mastering.
- (9) Restore the brake condition to its original condition.

3.5 TROUBLESHOOTING USING THE ERROR CODE

SRVO-001 Operator panel E-stop

(Explanation) The emergency stop button on the operator's panel is pressed.

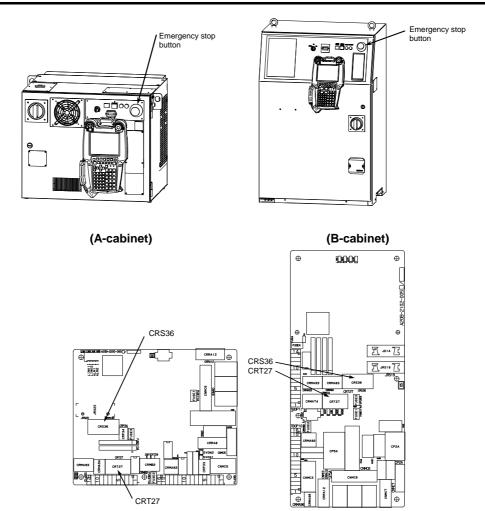
(Action 1) Release the emergency stop button pressed on the operator's panel.

(Action 2) Check the wires connecting between the emergency stop button and the emergency stop board (CRT27) for continuity. If an open wire is found, replace the entire harness.

(Action 3) Check the wires connecting between the teach pendant and the emergency stop board (CRS36) for continuity. If an open wire is found, replace the entire harness.

(Action 4) With the emergency stop in the released position, check for continuity across the terminals of the switch. If continuity is not found, the emergency stop button is broken. Replace the emergency stop button or the operator's panel.

(Action 5) Replace the teach pendant.


(Action 6) Replace the emergency stop board.

Before executing the (Action 7), perform a complete controller back-up to save all your programs and settings.

(Action 7) Replace the main board

NOTE

If SRVO-001 is issued together with SRVO-213, a fuse may have blown. Take the same actions as for SRVO-213.

(Emergency stop board/A-cabinet) (Emergency stop board/B-cabinet) Fig.3.5 (a) SRVO-001 Operator panel E-stop

SRVO-002 Teach pendant E-stop

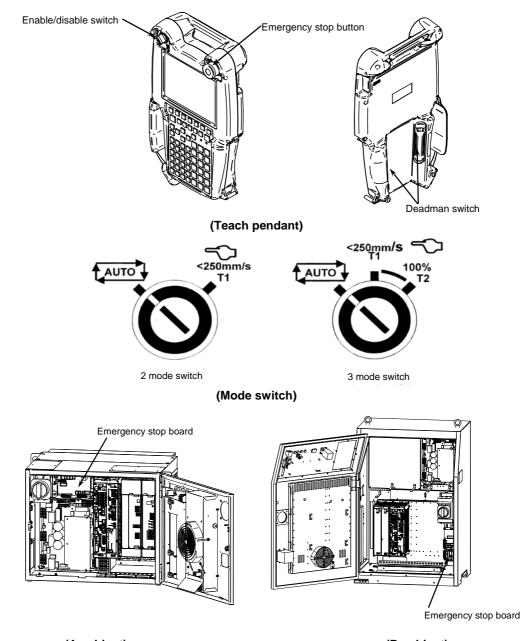
(Explanation) The emergency stop button on the teach pendant was pressed.

(Action 1) Release the emergency stop button on the teach pendant.

(Action 2) Replace the teach pendant.

SRVO-003 DEADMAN switch released

(Explanation) The teach pendant is enabled, but the DEADMAN switch is not pressed. Alternatively, the DEADMAN switch is pressed strongly.


(Action 1) Check the intermediate position of the DEADMAN switch on the teach pendant.

(Action 2) Check that the mode switch on the operator's panel and the enable/disable switch on the teach pendant are at the correct positions.

(Action 3) Replace the teach pendant.

(Action 4) Check the mode switch connection and operation. If trouble is found, replace the mode switch.

(Action 5) Replace the emergency stop board.

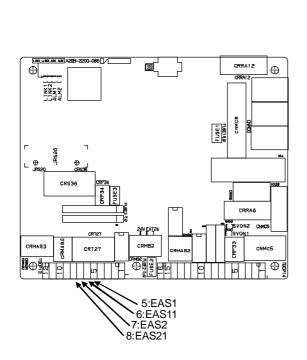
(A-cabinet) (B-cabinet)
Fig.3.5 (b) SRVO-002 Teach pendant E-stop / SRVO-003 DEADMAN switch released

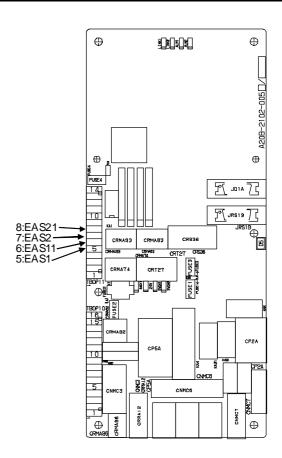
SRVO-004 Fence open

(Explanation) In the automatic operation mode, the safety fence contact connected to EAS1-EAS11 or EAS2-EAS21 of TBOP13(A-cabinet) or TBOP11(B-cabinet) is open.

(Action 1) When a safety fence is connected, close the safety fence.

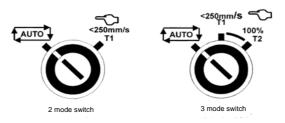
(Action 2) Check the cables and switches connected between EAS1 and EAS11 and between EAS2 and EAS21 of the terminal block TBOP13(A-cabinet) or TBOP11(B-cabinet) on the emergency stop board.


(Action 3) If the safety fence signal is not used, make a connection between EAS1 and EAS11 and between EAS2 and EAS21 of the terminal block TBOP13(A-cabinet) or TBOP11(B-cabinet) on the emergency stop board.


(Action 4) Check the mode switch. If trouble is found, replace the mode switch.

(Action 5) Replace the emergency stop board.

NOTE


If SRVO-004 is issued together with SRVO-213, a fuse may have blown. Take the same actions as for SRVO-213.

(Emergency stop board/A-cabinet)

(Emergency stop board/B-cabinet)

(Mode switch)
Fig.3.5 (c) SRV0-004 Fence open

♠ WARNING

In a system using the safety fence signal, it is very dangerous to disable the signal when a connection is made between EAS1 and EAS11 and between EAS2 and EAS21. Never make such an attempt. If a temporary connection is needed for operation, separate safety measures must be taken.

SRVO-005 Robot overtravel

(Explanation) The robot has moved beyond a hardware limit switch on the axes.

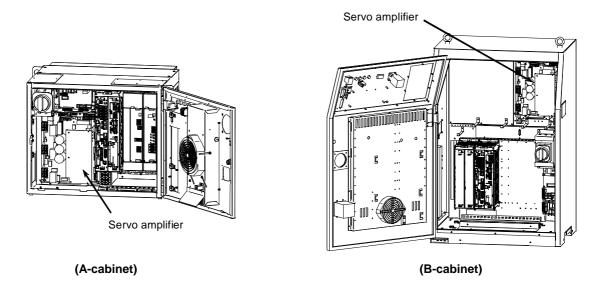
- (Action 1)
- Select [System OT release] on the overtravel release screen to release each robot axis from the overtravel state.
- 2) Hold down the shift key, and press the alarm release button to reset the alarm condition.
- Still hold down the shift key, and jog to bring all axes into the movable range.
- (Action 2) Replace the limit switch.
- (Action 3) Check the FS2 fuse on the 6-axis servo amplifier. If the SRVO-214 fuse blown alarm is also generated, the fuse (FS2) has blown.
- Check the EE connector. (Action 4)
- (Action 5) Replace the 6-axis servo amplifier.
- Verify the following for connector RP1 at the base of the robot: (Action 6)
 - There are no bent or dislocated pins in the male or female connectors.
 - The connector is securely connected.

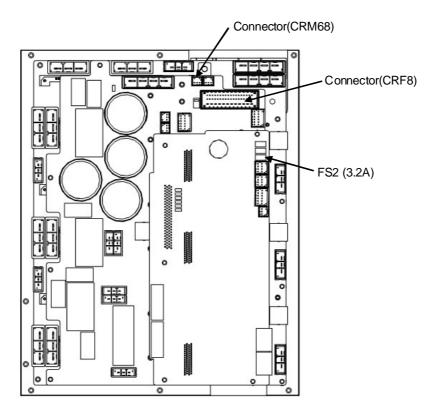
Then verify that connectors CRF8 and CRM68 on the 6-axis servo amplifier are securely connected. Also, verify that the robot connection cable (RMP1) is in good condition, and there are no cuts or kinks visible. Check the internal cable of the robot for a short circuit or connection to ground.

NOTE

It is factory-placed in the overtravel state for packing purposes. If the Overtravel signal is not in use, it may have been disabled by short-circuiting in the mechanical unit.

SRVO-006 Hand broken


(Explanation) The safety joint (if in use) might have been broken. Alternatively, the HBK signal on the robot connection cable might be a ground fault or a cable disconnection.


- Hold down the shift key, and press the alarm release button to reset the alarm (Action 1) condition. Still hold down the shift key, and jog the tool to the work area.
 - Replace the safety joint. 1)
 - Check the safety joint cable.
- Replace the 6-axis servo amplifier. (Action 2)
- Verify the following for connector RP1 at the base of the robot: (Action 3)
 - There are no bent or dislocated pins in the male or female connectors.
 - The connector is securely connected. 2)

Then verify that connectors CRF8 and CRM68 on the 6-axis servo amplifier are securely connected. Also, verify that the robot connection cable (RMP1) is in good condition, and there are no cuts or kinks visible. Check the internal cable of the robot for a short circuit or connection to ground.

NOTE

If the Hand broken signal is not in use, it can be disabled by software setting. Refer to Subsection 5.5.3 in CONNECTIONS to disable the Hand broken signal.

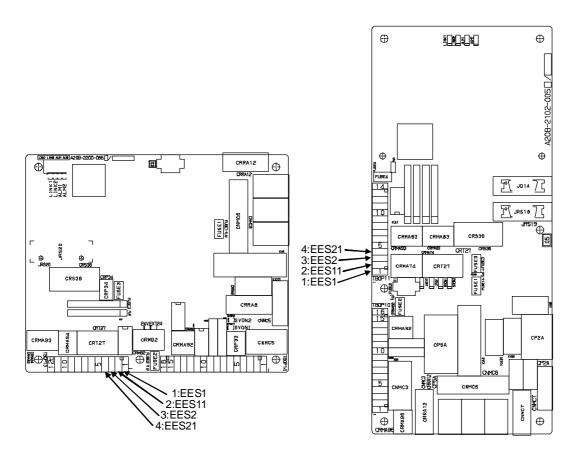
(Servo amplifier)

Fig.3.5 (d) SRVO-005 Robot overtravel SRVO-006 Hand broken

SRVO-007 External E-stop

(Explanation) On the terminal block TBOP13(A-cabinet) or TBOP11(B-cabinet) of the emergency stop board, no connection of external emergency stop is made between EES1 and EES11, EES2 and EES21.

(Action 1) If an external emergency stop switch is connected, release the switch.


(Action 2) Check the switch and cable connected to EES1-EES11 and EES2-EES21 on TBOP13(A-cabinet) or TBOP11(B-cabinet).

(Action 3) When this signal is not used, make a connection between EES1 and EES11, EES2 and EES21.

(Action 4) Replace the emergency stop board.

NOTE

If SRVO-007 is issued together with SRVO-213, a fuse may have blown. Take the same actions as for SRVO-213.

(Emergency stop board/A-cabinet) (Emergency stop board/B-cabinet) Fig.3.5 (e) SRVO-007 External E-stop

↑ WARNING

In a system using the external emergency stop signal, it is very dangerous to disable the signal when a connection is made between EES1 and EES11 and between EES2 and EES21. Never make such an attempt. If a temporary connection is needed for operation, separate safety measures must be taken.

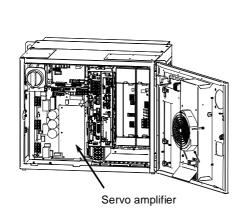
SRVO-009 Pneumatic pressure alarm

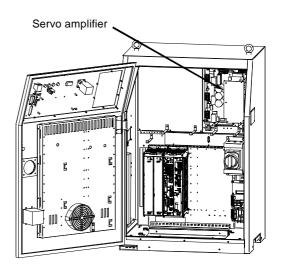
(Explanation) An abnormal air pressure was detected. The input signal is located on the EE interface of the robot. Refer to the manual of your robot.

(Action 1) If an abnormal air pressure is detected, check the cause.

(Action 2) Check the EE connector.

(Action 3) Check the robot connection cable (RP1) and the robot internal cable of the robot for a


ground fault or a cable disconnection. If a fault or a disconnection is detected,


replace the cable.

(Action 4) Replace the 6-axis servo amplifier.(Action 5) Replace the internal cables of the robot.

NOTE

Pneumatic pressure alarm input is on the EE interface of robot. Please refer to the manual of your robot.

(A-cabinet) (B-cabinet)

Fig.3.5 (f) SRVO-009 Pneumatic pressure alarm

SRVO-014 Fan motor abnormal

(Explanation) When a fan motor stops on backplane, TP shows the following message. In one minutes from occurring of alarm, robot stops and cannot be operated from TP. The robot can be recovered by replacing a fan motor. Number in the bracket indicates which fan is abnormal.

(1): fan above the slot1

(2): fan above slot2

(3): both fans

(Action 1) Check the fan motor and its cables. Replace them if necessary.

(Action 2) Replace the backplane.

Before executing the (Action 3), perform a complete controller back up to save all your programs and settings.

(Action 3) Replace the main board.

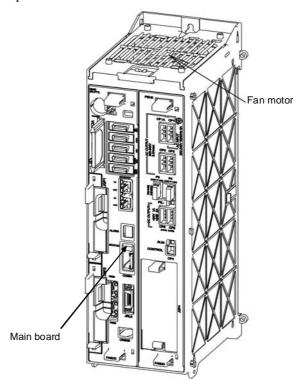
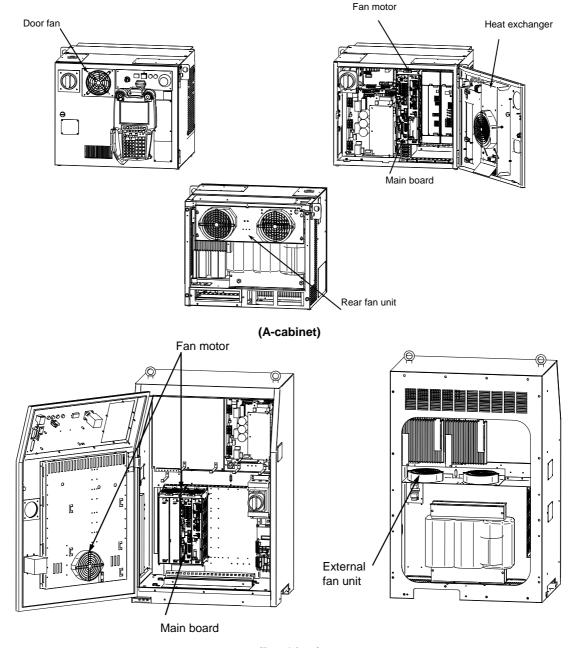


Fig.3.5 (g) SRVO-014 Fan motor abnormal

SRVO-015 System over heat

(Explanation) The temperature in the controller exceeds the specified value. In one minutes from occurring of alarm, robot stops and cannot be operated from TP.

(Action 1) If the ambient temperature is higher than specified (45°C), cool down the ambient temperature.


(Action 2) If the fan motor is not running, check it and its cables. Replace them if necessary.

Before executing the (Action 3), perform a complete controller backup to save all your programs and settings.

(Action 3) Replace the main board. (The thermostat on the main board may be faulty.)

NOTE

The controller will stop operation after 1 minutes of this alarm.

(B-cabinet)
Fig.3.5 (h) SRVO-015 SYSTEM OVER HEAT

SRVO-018 Brake abnormal

(Explanation) An excessive brake current is detected. The ALM LED on the 6-axis servo amplifier is lit.

(Action 1) Check the robot connection cable (RM1,RMP) and the internal cable of the robot and motor brakes connected to CRR88 connector on the 6-axis servo amplifier.

If a short-circuit or grounding fault is found, replace the failed part.

(Action 2) Check the cables and motor brakes connected to CRR65A, CRR65B connector on the 6-axis servo amplifier. If a short-circuit or grounding fault is found, replace the failed part.

(Action 3) Replace the 6-axis servo amplifier.

⚠ CAUTION

This error can be caused by the optional brake release unit if the on/off switch is left in on position while the operator attempts to jog the robot. To recover, turn the brake release unit off and cycle the controller power.

SRVO-021 SRDY off (Group: i Axis: j)

(Explanation) The HRDY is on and the SRDY is off, although there is no other cause of an alarm. (HRDY is a signal with which the host detects the servo system whether to turn on or off the servo amplifier magnetic contactor. SRDY is a signal with which the servo system informs the host whether the magnetic contactor is turned on.)

If the servo amplifier magnetic contactor cannot be turned on when directed so, it is most likely that a servo amplifier alarm has occurred. If a servo amplifier alarm has been detected, the host will not issue this alarm (SRDY off). Therefore, this alarm indicates that the magnetic contactor cannot be turned on for an unknown reason.

(Action 1) Make sure that the emergency stop board connectors CRRA8(A-cabinet) or CP2A(B-cabinet), CRMA92, CNMC5(A-cabinet), or CNMC7(B-cabinet), and servo amplifier CRMA91 are securely attached to the servo amplifier.

(Action 2) It is possible that an instant disconnection of power source causes this alarm. Check whether an instant disconnection occurred.

(Action 3) Replace the E-stop unit.

(Action 4) Replace the servo amplifier.

SRVO-022 SRDY on (Group: i Axis: j)

(Explanation) When the HRDY is about to go on, the SRDY is already on. (HRDY is a signal with which the host directs the servo system whether to turn on or off the servo amplifier magnetic contactor. SRDY is a signal with which the servo system informs the host whether the magnetic contactor is turned on.)

(Action 1) Replace the servo amplifier as the alarm message.

SRVO-023 Stop error excess (G:i A:j)

(Explanation) When the servo is at stop, the position error is abnormally large.

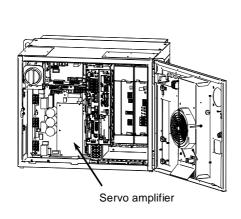
Check whether the brake is released through the clack sound of the brake or vibration.

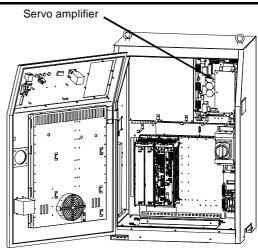
In case that the brake is not released.

(Action 1) If the brake is not released, check the continuity of the brake line in the robot connection cable and the robot internal cable.

(Action 2) If the disconnection is not found, replace the 6-axis servo amplifier or the servo motor

In case that the brake is released.


- (Action 1) Check whether the obstacle disturbs the robot motion.
- (Action 2) Make sure that connectors CNJ1A-CNJ6 are securely attached to the 6-axis servo amplifier.
- (Action 3) Check the continuity of the robot connection cable and the internal robot power cable.
- (Action 4) Check to see if the load is greater than the rating. If greater, reduce it to within the rating. (If the load is too great, the torque required for acceleration / deceleration becomes higher than the capacity of the motor.
 - As a result, the motor becomes unable to follow the command, and an alarm is issued.)
- (Action 5) Check the input voltage to the controller is within the rated voltage and no phase is lack. And check the setting of the transformer is correct.


 Check each phase voltage of the CRR38A or CRR38B connector of the three-phase power (200 VAC) input to the 6-axis servo amplifier. If it is 210 VAC or lower, check the line voltage. (If the voltage input to the servo amplifier becomes low, the torque output also becomes low. As a result, the motor may become unable to follow
- (Action 6) Replace the servo amplifier.
- (Action 7) Replace the motor of the alarm axis.

NOTE

Incorrect setting of the brake number causes this alarm.

the command, hence possibly causing an alarm.).

(A-cabinet)

(B-cabinet)

Fig.3.5 (i) SRVO-018 Brake abnormal SRVO-021 SRDY off SRVO-022 SRDY on SRVO-023 Stop error excess

SRVO-024 Move error excess (G:i A:j)

(Explanation) When the robot is running, its position error is greater than a specified value (\$PARAM _ GROUP. \$MOVER _ OFFST). It is likely that the robot cannot follow the speed specified by program.

(Action 1) Take the same actions as SRVO-023.

SRVO-027 Robot not mastered (Group: i)

(Explanation) An attempt was made to calibrate the robot, but the necessary adjustment had not been completed.

(Action) Check whether the mastering is valid. If the mastering is invalid, master the robot.

⚠ WARNING

If the position data is incorrect, the robot or additional axis can operate abnormally, set the position data correctly. Otherwise, you could injure personnel or damage equipment.

SRVO-030 Brake on hold (Group: i)

(Explanation) If the temporary halt alarm function is enabled (\$SCR.\$BRKHOLD ENB=1), SRVO-030 is issued when a temporary halt occurs. When this function is not used, disable the setting.

(Action) Disable [Servo-off in temporary halt] on the general item setting screen [6 General Setting Items].

SRVO-033 Robot not calibrated (Group: i)

(Explanation) An attempt was made to set up a reference point for quick mastering, but the robot had not been calibrated.

(Action) Calibrate the robot.

- 1. Supply power.
- 2. Set up a quick mastering reference point using [Positioning] on the positioning menu.

SRVO-034 Ref pos not set (Group: i)

(Explanation) An attempt was made to perform quick mastering, but the reference point had not been set up.

(Action) Set up a quick mastering reference point on the positioning menu.

SRVO-036 Inpos time over (G:i A:j)

(Explanation) The robot did not get to the effective area (\$PARAM _ GROUP.\$ STOPTOL) even after the position check monitoring time (\$PARAM _ GROUP. \$INPOS _ TIME) elapsed.

(Action) Take the same actions as for SRVO-023 (large position error at a stop).

SRVO-037 IMSTP input (Group: i)

(Explanation) The *IMSTP signal for a peripheral device interface was input.

(Action) Turn on the *IMSTP signal.

SRVO-038 Pulse mismatch (Group: i Axis: j)

(Explanation) The pulse count obtained when power is turned off does not match the pulse count obtained when power is applied. This alarm is asserted after exchange the Pulsecoder or battery for back up of the Pulsecoder data or loading back up data to the Main Board.

Check the alarm history.

- (Action 1) If the brake number is set to the non-brake motors, this alarm may occur. Check the software setting of the brake number.
- (Action 2) In case the robot has been moved by using the brake release unit while the power is off or when restoring the back-up data to the main board, this alarm may occur. Remaster the robot.
- (Action 3) If the robot has been moved because the brake failed, this alarm may occur. Check the cause of the brake trouble. Then remaster the robot.
- (Action 4) Replace the Pulsecoder and master the robot.

SRVO-043 DCAL alarm (Group: i Axis: j)

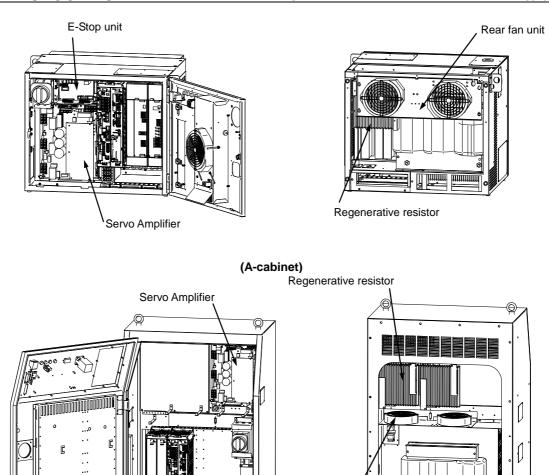
- (Explanation) The regenerative discharge energy was too high to be dissipated as heat. (To run the robot, the servo amplifier supplies energy to the robot. When going down the vertical axis, the robot operates from the potential energy. If a reduction in the potential energy is higher than the energy needed for acceleration, the servo amplifier receives energy from the motor. A similar phenomenon occurs even when no gravity is applied, for example, at deceleration on a horizontal axis. The energy that the servo amplifier receives from the motor is called the regenerative energy. The servo amplifier dissipates this energy as heat. If the regenerative energy is higher than the energy dissipated as heat, the difference is stored in the servo amplifier, causing an alarm.)
- (Action 1) This alarm may occur if the axis is subjected to frequent acceleration/deceleration or if the axis is vertical and generates a large amount of regenerative energy.

 If this alarm has occurred, relax the service conditions.
- (Action 2) Check fuse FS3 in the 6-axis servo amplifier. If it has blown, remove the cause, and replace the fuse. One of the probable causes of a blown fuse is a ground fault in the servo amplifier for the auxiliary axis.
- (Action 3) The ambient temperature is excessively high. Or the regenerative resistor can't be cooled effectively. Check the external fan unit, and replace it if it stops. Clean up the fun unit, the regenerative resistor and the louver if they are dirty.
- (Action 4) Make sure that the 6-axis servo amplifier CRR63A and CRR63B connectors are connected tightly. Then detach the cable from CRR63A and CRR63B connectors on the Servo amplifier, and check for continuity between pins 1 and 2 of the cable-end connector. If there is no continuity between the pins, replace the regenerative resistor.
- (Action 5) Make sure that the 6-axis servo amplifier CRRA11A and CRRA11B are connected tightly, then detach the cables from CRRA11A and CRRA11B on the servo amplifier and check the resistance between pins 1 and 3 of each cable end connector. If the resistance is not 6.5Ω , replace the regenerative resistor. CRRA11B may not be used depending on the robot model.
- (Action 6) Replace the 6-axis servo amplifier.

SRVO-044 DCHVAL%s alarm (G:%d A:%d)

(Explanation) The DC voltage (DC link voltage) of the main circuit power supply is abnormally high.

- (Action 1) Check the input voltage to the controller is within the rated voltage. And check the setting of the transformer is correct.
- (Action 2) Check the three-phase input voltage at the 6-Axis servo amplifier. If it is 240 VAC or higher, check the line voltage. (If the three-phase input voltage is higher than 240 VAC, high acceleration/deceleration can cause in this alarm.)
- (Action 3) Check that the load weight is within the rating. If it is higher than the rating, reduce it to within the rating. (If the machine load is higher than the rating, the accumulation of regenerative energy might result in the HVAL alarm even when the three-phase input voltage is within the rating.)
- (Action 4) Make sure that the 6-Axis servo amplifier CRRA11A and CRRA11B are connected tightly, then detach the cables from CRRA11A and CRRA11B on the servo amplifier and check the resistance between pins 1 and 3 of each cable end connector. If the resistance is not 6.5Ω , replace the regenerative resistor. CRRA11B may not be used depending on the robot model.
- (Action 5) Replace the 6-Axis servo amplifier.
- (Action 6) Replace the Power Supply(αiPS).


SRVO-045 HCAL alarm (Group: i Axis: j)

(Explanation) Abnormally high current flowed in the main circuit of the servo amplifier.

- (Action 1) Turn off the power, and disconnect the power cable from the 6-Axis servo amplifier indicated by the alarm message. (And disconnect the brake cable (CRR88 on the servo amplifier) to avoid the axis falling unexpectedly.) Supply power and see if the alarm occurs again. If the alarm occurs again, replace the servo amplifier.
- (Action 2) Turn off the power and disconnect the power cable from the servo amplifier indicated by the alarm message, and check the insulation of their U, V, W and the GND lines each other. If there is a short-circuit, replace the power cable.
- (Action 3) Turn off the power and disconnect the power cable from the servo amplifier by the alarm message, and measure the resistance between their U and V, V and W and U with an ohmmeter that has a very low resistance range. If the resistances at the three places are different from each other, the motor, the power cable is defective. Check each item in detail and replace it if necessary.

SRVO-046 OVC alarm (Group: i Axis: j)

- (Explanation) This alarm is issued to prevent the motor from thermal damage that might occur when the root meant square current calculated within the servo system is out of the allowable range.
- (Action 1) Check the operating condition for the robot and relax the service condition if possible. If the load or operating condition has exceeded the rating, reduce the load or relax the operating condition to meet the rating.
- (Action 2) Check whether the voltage input to the controller is within the rated voltage and also check whether the voltage set for the transformer of the controller is correct.
- (Action 3) Check whether the brake of the corresponding axis is released.
- (Action 4) Check whether there is a factor that has increased the mechanical load on the corresponding axis.
- (Action 5) Replace the servo amplifier.
- (Action 6) Replace the motor of the corresponding axis.
- (Action 7) Replace the E-stop unit
- (Action 8) Replace the motor power line (robot connection cable) of the corresponding axis.
- (Action 9) Replace the motor power line and brake line (internal cable of the robot) of the corresponding axis.

(B-cabinet)
Fig.3.5 (j) SRVO-043 DCAL alarm / SRVO-044 DCHVAL alarm SRVO-045 HCAL alarm / SRVO-046 OVC alarm

E-stop unit

External fan unit

Reference

Relationships among the OVC, OHAL, and HC alarms

This section points out the differences among the OVC, OHAL, and HC alarms and describes the purpose of each alarm.

Alarm detection section

Abbreviation	Designation	Detection section
OVC	Overcurrent alarm	Servo software
OHAL	Overheat alarm	Thermal relay in the motor
		Thermal relay in the servo amplifier
		Thermal relay in the separate regenerative resister
HC	High current alarm	Servo amplifier

Purpose of each alarm

1) HC alarm (high current alarm)

If high current flow in a power transistor momentarily due to abnormality or noise in the control circuit, the power transistor and rectifier diodes might be damaged, or the magnet of the motor might be degaussed. The HC alarm is intended to prevent such failures.

OVC and OHAL alarms (overcurrent and overload alarms)

The OVC and OHAL alarms are intended to prevent overheat that may lead to the burnout of the motor winding, the breakdown of the servo amplifier transistor, and the separate regenerative resistor.

The OHAL alarm occurs when each built-in thermal relay detects a temperature higher than the rated value. However, this method is not necessarily perfect to prevent these failures. For example, if the motor frequently repeats to start and stop, the thermal time constant of the motor, which has a large mass, becomes higher than the time constant of the thermal relay, because these two components are different in material, structure, and dimension. Therefore, if the motor continues to start and stop within a short time as shown in Fig. 3.5 (k), the temperature rise in the motor is steeper than that in the thermal relay, thus causing the motor to burn before the thermal relay detects an abnormally high temperature.

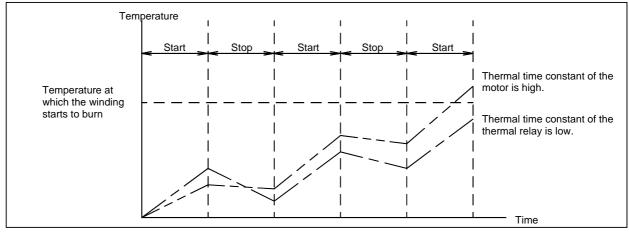


Fig.3.5 (k) Relationship between the temperatures of the motor and thermal relay on start/stop cycles

To prevent the above defects, software is used to monitor the current in the motor constantly in order to estimate the temperature of the motor. The OVC alarm is issued based on this estimated temperature. This method estimates the motor temperature with substantial accuracy, so it can prevent the failures described above.

To sum up, a double protection method is used; the OVC alarm is used for protection from a short-time overcurrent, and the OHAL alarm is used for protection from long-term overload. The relationship between the OVC and OHAL alarms is shown in Fig.3.5 (1).

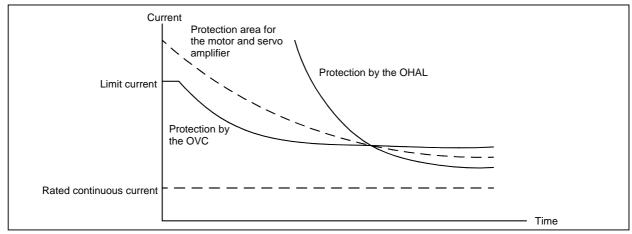
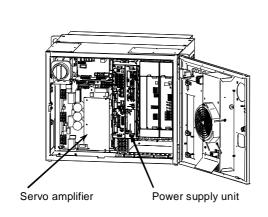
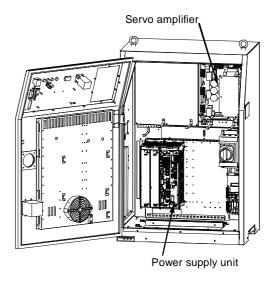


Fig.3.5 (I) Relationship between the OVC and OHAL alarms


NOTE


The relationship shown in Fig.3.5 (I) is taken into consideration for the OVC alarm. The motor might not be hot even if the OVC alarm has occurred. In this case, do not change the parameters to relax protection.

SRVO-047 LVAL alarm (Group: i Axis: j)

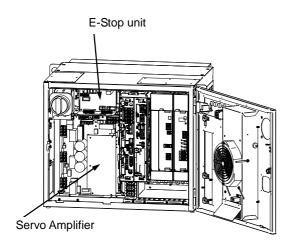
(Explanation) The control power supply voltage (+5 V, etc.) supplied from the power supply circuit in the servo amplifier is abnormally low.

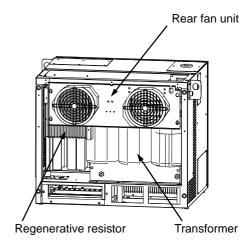
(Action 1) Replace the servo amplifier.(Action 2) Replace the power supply unit.

(A-cabinet) (B-cabinet) Fig.3.5 (m) SRVO-047 LVAL alarm

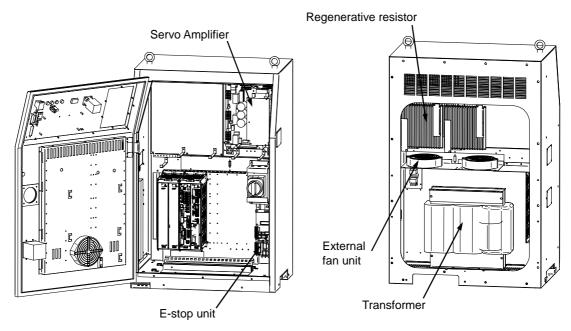
SRVO-049 OHAL1 alarm (G: i A: j)

(Explanation) The thermostat in the transformer worked.


- (Action 1) Check whether the fan is stopped and also check whether the vent hole is clogged. If necessary, clean or replace them.
- (Action 2) If SRVO-049 is issued when the robot operating condition is severe, check the robot operating condition then relax the condition when possible.
- (Action 3) Check that a connection is made between the transformer connector CPOH and the servo amplifier CRMA91.
- (Action 4) Check whether no phase occurs.
- (Action 5) Replace the E-stop unit.
- (Action 6) Replace the servo amplifier.
- (Action 7) Replace the transformer.


SRVO-050 Collision Detect alarm (Grp:i Ax:j)

- (Explanation) The disturbance torque estimated by the servo software is abnormally high. (A collision has been detected.)
- (Action 1) Check whether the robot has collided and also check whether there is a factor that has increased the mechanical load on the corresponding axis.
- (Action 2) Check whether the load settings are valid.
- (Action 3) Check whether the brake of the corresponding axis is released.
- (Action 4) If the load weight exceeds the rated range, decrease it to within the limit.
- (Action 5) Check whether the voltage input to the controller is within the rated voltage and also check whether the voltage set for the transformer of the controller is correct.
- (Action 6) Replace the servo amplifier.
- (Action 7) Replace the motor of the corresponding axis.
- (Action 8) Replace the E-stop unit.
- (Action 9) Replace the motor power line (robot connection cable) of the corresponding axis.
- (Action 10) Replace the motor power line and brake line (internal cable of the robot) of the corresponding axis.


SRVO-051 CUER alarm (Group: i Axis: j)

(Explanation) The offset of the current feedback value is abnormally high. (Action) Replace the servo amplifier.

(A- cabinet)

(B-cabinet)

Fig.3.5 (n) SRVO-049 OHAL1 alarm SRVO-050 CLALM alarm SRVO-051 CUER alarm

SRVO-055 FSSB com error 1 (G: i A: j)

(Explanation) A communication error has occurred between the main board and servo amplifier.

(Action 1) Check the optical fiber cable between the axis control card on the main board and servo amplifier. Replace it if it is faulty.

(Action 2) Replace the axis control card on the main board.

(Action 3) Replace the servo amplifier.

SRVO-056 FSSB com error 2 (G: i A: j)

(Explanation) A communication error has occurred between the main board and servo amplifier.

(Action 1) Check the optical fiber cable between the axis control card on the main board and servo amplifier. Replace it if it is faulty.

(Action 2) Replace the axis control card on the main board.

(Action 3) Replace the servo amplifier.

SRVO-057 FSSB disconnect (G:i A: j)

(Explanation) Communication was interrupted between the main board and servo amplifier.

(Action 1) Check whether fuse (F4) in the power supply unit has blown. If the fuse has blown, check and correct the cause then replace the fuse.

(Action 2) Check whether fuse (FS1) in the 6-Axis servo amplifier has blown. If the fuse has blown, replace the 6-Axis servo amplifier including the fuse.

(Action 3) Check the optical fiber cable between the axis control card on the main board and servo amplifier. Replace it if it is faulty.

(Action 4) Replace the axis control card on the main board.

(Action 5) Replace the servo amplifier.

(Action 6) Check the robot connection cable (RP1) is in good condition, and there are no cuts or kinks visible. Check the internal cable of the robot (Pulsecoder cable) for a short circuit or connection to ground.

Before continuing to the next step, perform a complete controller back up to save all your programs and settings.

(Action 7) Replace the main board.

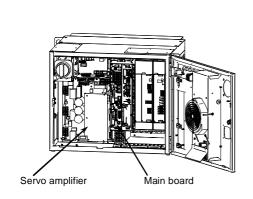
SRVO-058 FSSB init error (yy)

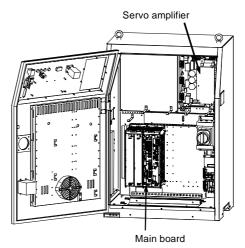
(Explanation) Communication was interrupted between the main board and servo amplifier.

(Action 1) Check whether fuse (F4) in the power supply unit has blown. If the fuse has blown, check and correct the cause then replace the fuse.

(Action 2) Check whether fuse (FS1) on the 6-Axis servo amplifier has blown. If the fuse has blown, replace the servo amplifier including the fuse.

(Action 3) Turn off the power and disconnect the CRF8 connector on the 6-Axis servo amplifier. Then check whether this alarm occurs again. (Ignore the alarm SRVO-068 because of disconnecting the CRF8 connector.)


If this alarm does not occur, the robot connection cable (RP1) or the internal cable of the robot (Pulsecoder cable) may be short-circuited to the ground. Check the cables and replace it if necessary.


- (Action 4) Check whether the LED (P5V and P3.3V) on the 6-Axis servo amplifier is lit. If they are not lit, the DC power is not supplied to the servo amplifier.

 Make sure the connector CP5 on the power supply unit and the connector CXA2B on the 6-Axis servo amplifier are connected tightly. If they are connected tightly
 - the 6-Axis servo amplifier are connected tightly. If they are connected tightly, replace the 6-Axis servo amplifier.
- (Action 5) Check the optical fiber cable between the axis control card on the main board and servo amplifier. Replace it if it is faulty.
- (Action 6) Replace the axis control card on the main board.
- (Action 7) Replace the 6-Axis servo amplifier.
- (Action 8) If the other units (the servo amplifier for the auxiliary axis and the line tracking board) are connected in the FSSB optical communication, disconnect these units and connect only 6-Axis servo amplifier for the robot. Then turn on the power. If this alarm does not occur, search the failed unit and replace it.

Before executing the (Action9), perform a complete controller back up to save all your programs and settings.

(Action 9) Replace the main board.

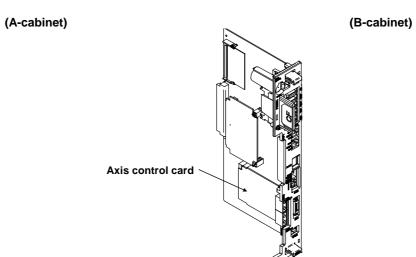


Fig.3.5 (o) SRVO-055 FSSB com error 1 SRVO-056 FSSB com error 2 SRVO-057 FSSB disconnect SRVO-058 FSSB init error

(Main board)

SRVO-059 Servo amp init error

(Explanation) Servo amplifier initialization is failed.

(Action 1) Check the optical fiber cable between the axis control card on the main board and servo amplifier. Replace it if it is faulty.

(Action 2) Turn off the power and disconnect the CRF8 connector on the 6-Axis servo amplifier. Then check whether this alarm occurs again. (Ignore the alarm SRVO-068 because of disconnecting the CRF8 connector.)

If this alarm does not occur, the robot connection cable (RP1) or the internal cable of the robot (Pulsecoder cable) may be short-circuited to the ground. Check the cables and replace it if necessary.

(Action 3) Check whether the LED (P5V and P3.3V) on the 6-Axis servo amplifier is lit. If they are not lit, the DC power is not supplied to the servo amplifier.

Make sure the connector CP5 on the power supply unit and the connector CXA2B on the 6-Axis servo amplifier are connected tightly. If they are connected tightly, replace the 6-Axis servo amplifier.

(Action 4) Replace the servo amplifier.

(Action 5) Replace the line tracking board (If installed).

(Action 6) Replace the Pulsecoder.

SRVO-062 BZAL alarm (Group: i Axis: j)

(Explanation) This alarm occurs if battery for Pulsecoder absolute-position backup is empty.

A probable cause is a broken battery cable or no batteries in the robot.

(Action 1) Replace the battery in the battery box of the robot base.

(Action 2) Replace the Pulsecoder with which an alarm has been issued.

(Action 3) Check whether the robot internal cable for feeding power from the battery to the Pulsecoder is not disconnected and grounded. If an abnormality is found, replace the cable.

⚠ CAUTION

After correcting the cause of this alarm, set the system variable (\$MCR.\$SPC_RESET) to TRUE then turn on the power again. Mastering is needed.

SRVO-064 PHAL alarm (Group: i Axis: j)

(Explanation) This alarm occurs if the phase of the pulses generated in the Pulsecoder is abnormal. (Action) Replace the Pulsecoder with which an alarm has been issued.

NOTE

This alarm might accompany the DTERR, CRCERR, or STBERR alarm. In this case, however, there may be no actual condition for this alarm.

SRVO-065 BLAL alarm (Group: i Axis: j)

(Explanation) The battery voltage for the Pulsecoder is lower than the rating.

(Action) Replace the battery.

(If this alarm occurs, turn on the power and replace the battery as soon as possible. A delay in battery replacement may result in the BZAL alarm being detected. In this case, the position data will be lost. Once the position data is lost, mastering will become necessary.

SRVO-067 OHAL2 alarm (Grp:i Ax:j)

(Explanation) The temperature inside the Pulsecoder or motor is abnormally high, and the built-in thermostat has operated.

- (Action 1) Check the robot operating conditions. If a condition such as the duty cycle and load weight has exceeded the rating, relax the robot load condition to meet the allowable range.
- (Action 2) When power is supplied to the motor after it has become sufficiently cool, if the alarm still occurs, replace the motor.

SRVO-068 DTERR alarm (Grp:i Ax:j)

(Explanation) The serial Pulsecoder does not return serial data in response to a request signal.

(Action 1) Make sure that the robot connection cable (RP1) connector (CRF8) of 6-Axis servo amplifier and the connector (motor side) are connected tightly.

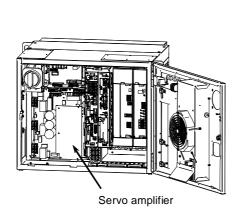
(Action 2) Check that the shielding of the robot connection cable (RP1) is grounded securely in the cabinet.

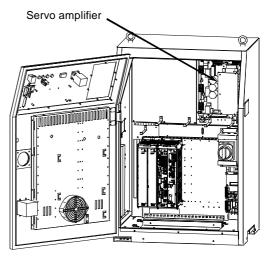
(Action 3) Replace the Pulsecoder. (Action 4) Replace the servo amplifier.

(Action 5) Replace the robot connection cable (RM1, RP1).

(Action 6) Replace the internal cable of the robot (for the Pulsecoder, motor cable).

SRVO-069 CRCERR alarm (Grp:i Ax:j)


(Explanation) The serial data has disturbed during communication.


(Action) See actions on SRVO-068

SRVO-070 STBERR alarm (Grp:i Ax:j)

(Explanation) The start and stop bits of the serial data are abnormal.

(Action) See actions on SRVO-068

(A-cabinet)

(B-cabinet)

Fig.3.5 (p) SRVO-059 Servo amp init error SRVO-070 STBERR alarm

SRVO-071 SPHAL alarm (Grp:i Ax:j)

(Explanation) The feedback speed is abnormally high. (Action) Action as same as the SRVO-068.

NOTE

If this alarm occurs together with the PHAL alarm (SRVO-064), this alarm does not correspond to the major cause of the failure.

SRVO-072 PMAL alarm (Group: i Axis: j)

(Explanation) It is likely that the Pulsecoder is abnormal. (Action) Replace the Pulsecoder and remaster the robot.

SRVO-073 CMAL alarm (Group: i Axis: j)

(Explanation) It is likely that the Pulsecoder is abnormal or the Pulsecoder has malfunctioned due to noise.

(Action 1) Check whether the connection of the controller earth is good. Check the earth cable connection between controller and robot connection cables are connected securely to the grounding plate.

(Action 2) Reinforce the earth of the motor flange. (In case of Auxiliary axis)

(Action 3) Reset the Pulse count.

(Action 4) Replace the Pulsecoder.

(Action 5) Replace the robot connection cable (RM1, RP1).

(Action 6) Replace the internal cable of the robot (for the Pulsecoder, motor cable).

SRVO-074 LDAL alarm (Group: i Axis: j)

(Explanation) The LED in the Pulsecoder is broken.

(Action) Replace the Pulsecoder, and remaster the robot.

SRVO-075 Pulse not established (G: i A: j)

(Explanation) The absolute position of the Pulsecoder cannot be established.

(Action) Reset the alarm, and jog the axis on which the alarm has occurred until the same alarm will not occur again.

SRVO-076 Tip Stick Detection (G: i A: j)

(Explanation) An excessive disturbance was assumed in servo software at the start of operation. (An abnormal load was detected. The cause may be welding.)

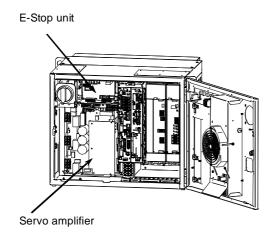
(Action 1) Check whether the robot has collided. Or check whether the machinery load of the corresponding axis is increased.

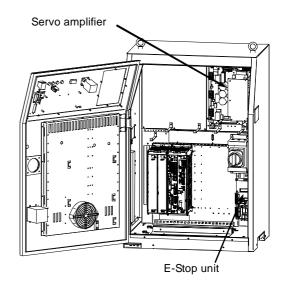
(Action 2) Check whether the load settings are valid.

(Action 3) Check whether the brake of the corresponding axis is released.

(Action 4) Check whether the load weight is within the rated range. If the weight exceeds the upper limit, decrease it to the limit.

(Action 5) Check whether the voltage input to the controller is within the rated voltage and also check whether the voltage set for the transformer of the controller is correct.


(Action 6) Replace the servo amplifier.


(Action 7) Replace the corresponding servo motor.

(Action 8) Replace the E-stop unit.

(Action 9) Replace the power cable of the robot connection cable in which the corresponding axis is connected.

(Action 10) Replace the internal cable of the robot (power/brake) in which the corresponding axis is connected.

(A-cabinet) (B-cabinet)

Fig.3.5 (q) SRVO-076 Tip Stick Detection

SRVO-081 EROFL alarm (Track enc: i)

(Explanation) The pulse counter for line tracking has overflowed.

(Action 1) Check whether the condition of the line tracking exceeds the limitation.

(Action 2) Replace the Pulsecoder.

(Action 3) Replace the line tracking board.

SRVO-082 DAL alarm (Track encoder: i)

(Explanation) The line tracking Pulsecoder has not been connected.

(Action 1) Check the connection cable at each end (the line tracking board and the motor side)

(Action 2) Check whether the shielding of the connection cable is connected securely to the grounding plate.

(Action 3) Replace the line tracking cable.

(Action 4) Replace the Pulsecoder.

(Action 5) Replace the line tracking board.

SRVO-084 BZAL alarm (Track enc: i)

(Explanation) This alarm occurs if the backup battery for the absolute position of the Pulsecoder has not been connected. See the description about the BZAL alarm (SRVO-062).

SRVO-087 BLAL alarm (Track enc: i)

(Explanation) This alarm occurs if the voltage of the backup battery for the absolute position of the Pulsecoder is low. See the description about the BLAL alarm (SRVO-065).

SRVO-089 OHAL2 alarm (Track enc: i)

(Explanation) The motor has overheated. When power is supplied to the Pulsecoder after it has become sufficiently cool, if the alarm still occurs. See the description about the OHAL2 alarm (SRVO-067).

SRVO-090 DTERR alarm (Track enc: i)

(Explanation) Communication between the Pulsecoder and line tracking board is abnormal. See the SRVO-068 DTERR alarm.

(Action 1) Check the connection cable at each end (the line tracking board and the Pulsecoder)

(Action 2) Check whether the shielding of the connection cable is connected securely to the grounding plate.

(Action 3) Replace the Pulsecoder.

(Action 4) Replace the line tracking cable.

(Action 5) Replace the line tracking board.

SRVO-091 CRCERR alarm (Track enc: i)

(Explanation) Communication between the Pulsecoder and line tracking board is abnormal.

(Action) Action as same as the SRVO-090.

SRVO-092 STBERR alarm (Track enc: i)

(Explanation) Communication between the Pulsecoder and line tracking board is abnormal.

(Action) Action as same as the SRVO-090.

SRVO-093 SPHAL alarm (Track enc: i)

(Explanation) This alarm occurs if the current position data from the Pulsecoder is higher than the previous position data.

(Action) Action as same as the SRVO-090.

SRVO-094 PMAL alarm (Track enc: i)

(Explanation) It is likely that the Pulsecoder is abnormal.

(Action) Replace the Pulsecoder.

SRVO-095 CMAL alarm (Track enc: i)

(Explanation) It is likely that the Pulsecoder is abnormal or the Pulsecoder has malfunctioned due to noise. See the description about the CMAL alarm (SRVO-073).

(Action 1) Reinforce the earth of the flange of the Pulsecoder.

(Action 2) Reset the Pulse count.

(Action 3) Replace the Pulsecoder.

SRVO-096 LDAL alarm (Track enc: i)

(Explanation) The LED in the Pulsecoder is broken. See the description about the LDAL alarm (SRVO-074).

SRVO-097 Pulse not established (enc: i)

(Explanation) The absolute position of the Pulsecoder cannot be established. See the description about (SRVO-075). Pulse not established.

(Action 1) Reset the alarm, and jog the axis on which the alarm has occurred until the same alarm does not occur again. (Jog one motor revolution)

SRVO-105 Door open or E.Stop

(Explanation) The cabinet door is open.

- When the door switch is not mounted skip Action 1 and 2 and start from Action 3
- (Action 1) When the door is open, close it.
- (Action 2) Check the door switch and door switch connection cable. If the switch or cable is faulty, replace it.
- (Action 3) Check that the CRMA92, CRMA94(A-cabinet), CRMA74(B-cabinet) connectors on the E-STOP unit and CRMA91 on the servo amplifier are connected securely.
- (Action 4) Replace the emergency stop board.
- (Action 5) Replace the 6-Axis servo amplifier.

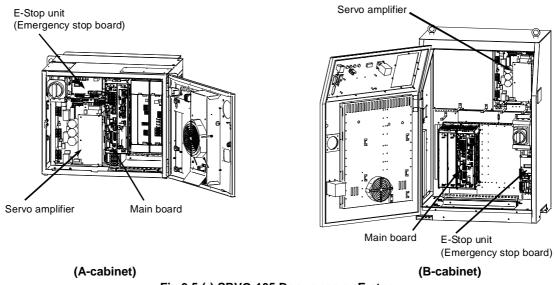


Fig.3.5 (r) SRVO-105 Door open or E-stop

SRVO-123 Fan motor rev slow down(%d)

(Explanation) The rotation speed of fan motor is slow down.

- (Action 1) Check the fan motor and its cables. Replace them if necessary.
- (Action 2) Replace the backplane unit.

Before executing the (Action 3), perform a complete controller back up to save all your programs and settings.

(Action 3) Replace the main board.

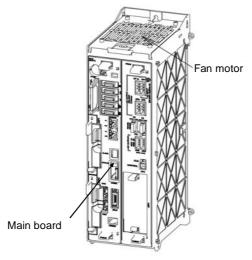


Fig.3.5 (s) SRVO-123 Fan motor rev slow down(%d)

SRVO-130 OHAL1(PS) alarm (G:%d A:%d)

(Explanation) Heat sink temperature of the main circuit of the Power Supply(αi PS) is abnormally high.

- (Action 1) Check the rotation of the cooling fan of the Power Supply(αiPS).
- (Action 2) Decrease the duty cycle of operation. (Decrease override)
- (Action 3) Replace the Power Supply(αi PS).

SRVO-131 LVAL%s alarm (G:%d A:%d)

- (Explanation) Control supply voltage in the Power Supply(αiPS) is abnormally low.
- (Action 1) Replace the Power Supply(αiPS).
- (Action 2) Replace the servo amplifier.
- (Action 3) Replace the Power Supply Unit.

SRVO-133 FSAL(PS) alarm (G:%d A:%d)

- (Explanation) The cooling fan for the Control circuit of the Power Supply(αi PS) stopped.
- (Action 1) Check the status of the cooling fan. And replace it if it was abnormal.
- (Action 2) Replace the Power Supply(αiPS).

[Regenarative resistor]

SRVO-134 DCLVAL alarm (G:%d A:%d)

[Power supply regeneration]

SRVO-134 DCLVAL(PS) alarm (G:%d A:%d)

- (Explanation) The DC voltage (DC link voltage) of the main circuit power supply for the servo amplifier is abnormally low.
- (Action 1) It is possible that an instant disconnection of power source causes this alarm. Check whether an instant disconnection occurred.
- (Action 2) Check the input voltage to the controller is within the rated voltage. And check the setting of the transformer is correct.
- (Action 3) Modify the program in order that robot and the auxiliary axis do not accelerate simultaneously in the system with the auxiliary axis.
- (Action 4) Replace the E-stop unit.
- (Action 5) Replace the servo amplifier (6-Axis amplifier).
- (Action 6) Replace the Power Supply(αiPS).

SRVO-136 DCLVAL alarm (G:%d A:%d)

- (Explanation) The DC voltage (DC link voltage) of the main circuit power supply for the servo amplifier (αi SV) is abnormally low.
- (Action 1) Check the wiring of the servo amplifier (αiSV).
- (Action 2) Replace the servo amplifier (αiSV) that is indicated by the alarm message.

SRVO-156 IPMAL alarm (G: i A: j)

(Explanation) Abnormally high current flowed through the main circuit of the servo amplifier.

(Action 1) Turn off the power, and disconnect the power cable from the servo amplifier indicated by the alarm message. (And disconnect the brake cable (CRR88 on the servo amplifier) to avoid the axis falling unexpectedly.) Turn on the power, and if the alarm occurs again, replace the servo amplifier.

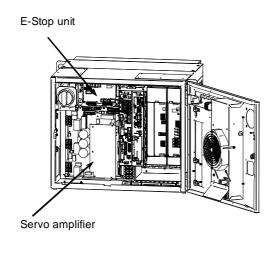
(Action 2) Turn off the power and disconnect the power cable from the servo amplifier indicated by the alarm message, and check the insulation of their U, V, W and the GND lines each other. If there is a short-circuit, replace the power cable.

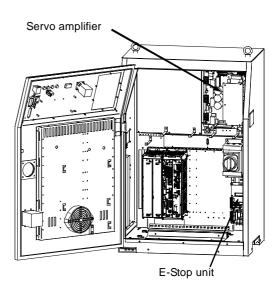
(Action 3) Turn off the power and disconnect the power cable from the servo amplifier by the alarm message, and measure the resistance between their U and V, V and W and U with an ohmmeter that has a very low resistance range. If the resistances at the three places are different from each other, the motor, the power cable is defective. Check each item in detail and replace it if necessary.

SRVO-157 CHGAL alarm (G: i A: j)

(Explanation) The capacitor on the servo amplifier was not charged properly within the specified time when the servo power is on.

(Action 1) Check the input voltage to the controller is within the rated voltage and phase is not lack. And check the setting of the transformer is correct.


(Action 2) Check that the circuit breaker of the E-Stop unit is on and has not tripped.


(Action 3) Make sure that the servo amplifier CRRA12 and emergency stop board CRRA12 connector are connected tightly. If αi PS is used, make sure that the αi PS CX48 connector is connected tightly.

(Action 4) Replace the αiPS .

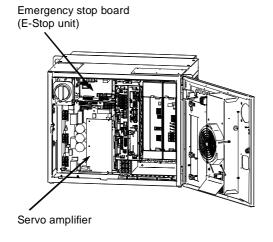
(Action 5) Replace the 6-Axis servo amplifier.

(Action 6) Replace the E-stop unit.

(A-cabinet)

(B-cabinet)

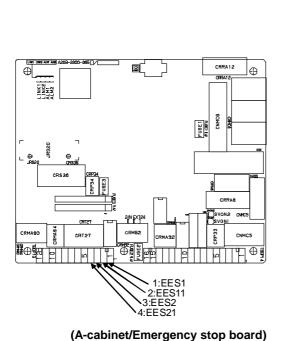
Fig.3.5 (t) SRVO-136 DCLVAL alarm SRVO-156 IPMAL alarm SRVO-157 CHGAL alarm


SRVO-204 External (SVEMG abnormal) E-stop

(Explanation) The switch connected across EES1 – EES11 and EES2 – EES21 on the TBOP13(A-cabinet) or TBOP11(B-cabinet) on the emergency stop board was pressed, but the EMERGENCY STOP line was not disconnected.

(Action 1) Check the switch and cable connected to EES1 – EES11 and EES2 – EES21 on the TBOP13(A-cabinet) or TBOP11(B-cabinet). If the cable is abnormal, replace it.

(Action 2) Replace the emergency stop board.

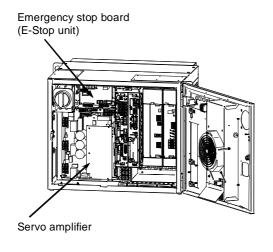

(Action 3) Replace the 6-Axis servo amplifier.

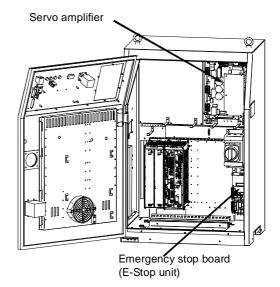
Emergency stop board (E-Stop unit)

(B-cabinet)

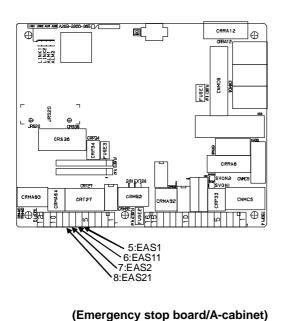
(A-cabinet)

(B-cabinet/Emergency stop board)

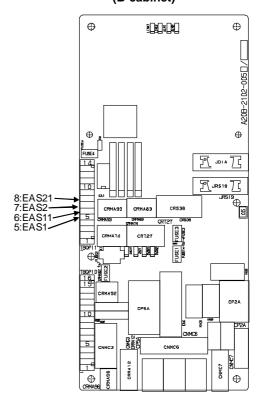

Fig.3.5 (u) SRVO-204 External (SVEMG abnormal) E-stop


SRVO-205 Fence open (SVEMG abnormal)

(Explanation) The switch connected across EAS1 – EAS11 and EAS2 – EAS21 on the TBOP13(A-cabinet) or TBOP11(B-cabinet) on the emergency stop board was opened, but the EMERGENCY STOP line was not disconnected.

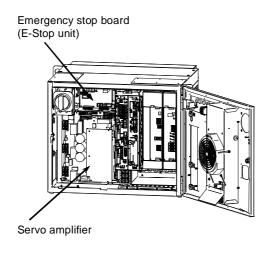

(Action 1) Check the switch and cable connected to EAS1 – EAS11 and EAS2 – EAS21. If the cable is abnormal, replace it.

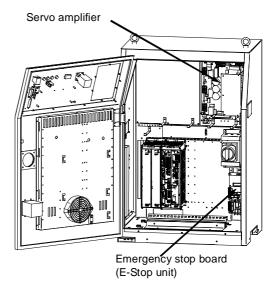
(Action 2) Replace the emergency stop board. (Action 3) Replace the 6-Axis servo amplifier.



(A-cabinet)

(B-cabinet)


(Emergency stop board/B-cabinet)


Fig.3.5 (v) SRVO-205 Fence open (SVEMG abnormal)

SRVO-206 Deadman switch (SVEMG abnormal)

(Explanation) When the teach pendant was enabled, the DEADMAN switch was released or pressed strongly, but the emergency stop line was not disconnected.

- (Action 1) Replace the teach pendant.
- (Action 2) Check the teach pendant cable. If it is inferior, replace the cable.
- (Action 3) Replace the emergency stop board.
- (Action 4) When the NTED signal is used, check whether the cabling of the signal connected to the emergency stop board is correct.
- (Action 5) Replace the 6-Axis servo amplifier.

(A-cabinet) (B-cabinet) Fig.3.5 (w) SRVO-206 DEADMAN switch (SVEMG abnormal)

SRVO-213 E-STOP Board FUSE2 blown

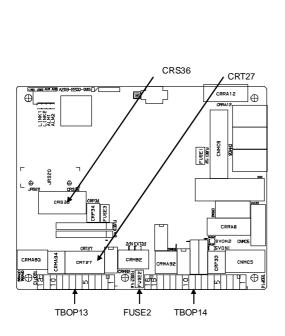
(Explanation) A fuse (FUSE2) on the emergency stop board has blown, or no voltage is supplied to EXT24V.

(Action 1) Check whether the fuse (FUSE2) on the emergency stop board has blown. If the fuse has blown, 24EXT may be short-circuited to 0EXT. Take Action 2. If fuse (FUSE2) has not blown, take Action 3 and up.

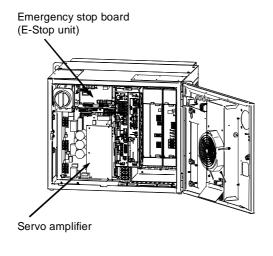
(Action 2) Disconnect the connection destinations of 24EXT that can cause grounding then check that the fuse (FUSE2) does not blow. Disconnect the following on the emergency stop board then turn on the power:

- CRS36
- CRT27
- TBOP13(A-cabinet) or TBOP11(B-cabinet) : EES1, EES11, EAS1, EAS11, EGS1, EGS11

If the fuse (FUSE2) does not blow in this state, 24EXT and 0EXT may be short-circuited at any of the connection destinations above. Isolate the faulty location then take action.

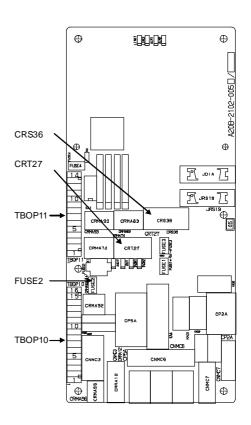

If the fuse (FUSE2) blows even when the connection destinations above are detached, replace the emergency stop board.

(Action 3) Check whether 24 V is applied to between EXT24V and EXT0V of TBOP14(A-cabinet), TBOP10(B-cabinet). If not, check the external power supply circuit.

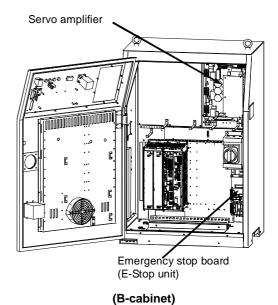

If no external power supply is used, check whether the terminals above are connected to the INT24V and INT0V terminals, respectively.

- (Action 4) Replace emergency stop board.
- (Action 5) Replace the teach pendant cable.

- (Action 6) Replace the teach pendant.
- (Action 7) Replace the operator's panel cable(CRT27).



(Emergency stop board/A-cabinet)



(A-cabinet)

Fig.3.5 (x) SRVO-213 E-STOP Board FUSE2 blown

(Emergency stop board/B-cabinet)

SRVO-214 6ch amplifier fuse blown (R: i)

(Explanation) A fuse (FS2 or FS3) in the 6-Axis servo amplifier has blown.

(Action 1) A fuse is blown, eliminate the cause, and then replace the fuse. (See Section 3.6)

(Action 2) Replace the 6-Axis servo amplifier.

SRVO-216 OVC (total) (Robot: i)

(Explanation) The current (total current for six axes) flowing through the motor is too large.

(Action 1) Slow the motion of the robot where possible. Check the robot operation conditions. If the robot is used with a condition exceeding the duty or load weight robot rating, reduce the load condition value to the specification range.

(Action 2) Check the input voltage to the controller is within the rated voltage and no phase is lack. And check the setting of the transformer is correct.

(Action 3) Replace the 6-Axis servo amplifier.

SRVO-217 E-STOP Board not found

(Explanation) The emergency stop board is not found when the controller power is turned on.

(Action 1) Check whether fuse (FUSE1) on the emergency stop board has blown. If the fuse has blown, check and correct the cause then replace the fuse.

(Action 2) Check the cable between emergency stop board and main board. Replace them if necessary.

(Action 3) Replace the E-STOP unit.

Before executing the (Action 4), perform a complete controller back-up to save all your programs and settings.

(Action 4) Replace the main board.

SRVO-221 Lack of DSP (G: i A: j)

(Explanation) A controlled axis card corresponding to the set number of axes is not mounted.

(Action 1) Check whether the set number of axes is valid. If the number is invalid, set the correct number.

(Action 2) Replace the axis control card with a card corresponding to the set number of axes.

SRVO-223 DSP dry run (%d,%d)

(Explanation) A servo DSP initialization failure occurred due to hardware failure or wrong software setting. Then, the software entered DSP dry run mode. The first number indicates the cause of the failure. The second number is extra information.

(Action) Perform an action according to the first number that is displayed in the alarm message.

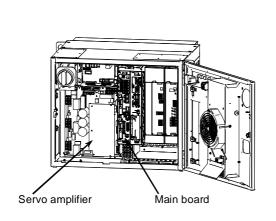
1: This is a warning due to \$scr.\$startup cnd=12.

2,3,4,7: Replace a servo card.

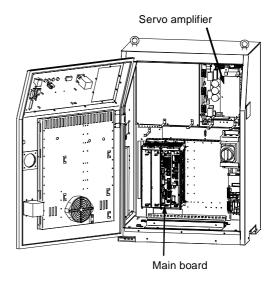
5: Invalid ATR setting. Software axis config (FSSB line number, hardware start axis number, amplifier number, and amplifier type) might be wrong.

6: SRVO-180 occurs simultaneously. Controllable axis does not exist on any group. Execute aux axis setting to add axis at controlled start.

8,10: SRVO-058 (FSSB init error) occurs simultaneously. Follow the remedy of SRVO-058.


9: There is no amplifier that is connected to the servo card.

- •Check the hardware connection.
- •Check the optical fiber cable.
- •Check whether the servo amplifier power is supplied.
- •Check whether the fuse on the servo amplifier has blown.
- •Replace the optical fiber cable.
- •Replace the servo amplifier


11: Invalid axisorder setting. Non-existing axis number is specified. Software axis config (FSSB line number) might be wrong or auxiliary axis board is necessary.

12: SRVO-059 (Servo amp init error) occurs simultaneously. Follow the remedy of SRVO-059.

13,14,15: Document the events that led to the error, and contact your FANUC technical representative.

(A-cabinet)

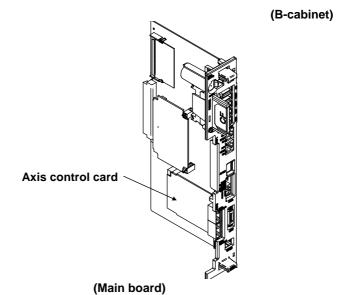


Fig.3.5 (y) SRVO-214 6ch amplifier fuse blown (Panel PCB)
SRVO-216 OVC (total)
SRVO-221 Lack of DSP
SRVO-223 DSP dry run (%d,%d)

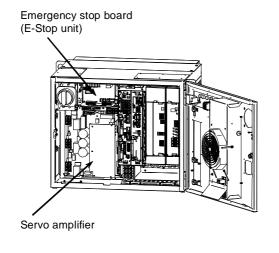
SRVO-230 Chain 1 abnormal a, b SRVO-231 Chain 2 abnormal a, b

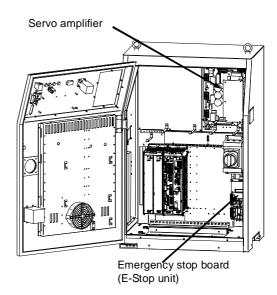
(Explanation) A mismatch occurred between duplicate safety signals.

SRVO-230 is issued if such a mismatch that a contact connected on the chain 1 side (between EES1 and EES11, between EAS1 and EAS11, between EGS1 and EGS11, and so forth) is closed, and a contact on the chain 2 side (between EES2 and EES21, between EAS2 and EAS21, between EGS2 and EGS21, and so forth) is open occurs. SRVO-231 is issued if such a mismatch that a contact on the chain 1 side is open, and a contact on the chain 2 side is closed occurs.

If a chain error is detected, correct the cause of the alarm then reset the alarm according to the method described later.

(Action) Check the alarms issued at the same time in order to identify with which signal the mismatch occurred.


SRVO-266 through SRVO-275 and SRVO-370 through SRVO-385 are issued at the same time. Take the action(s) described for each item.


♠ WARNING

If this alarm is issued, do not reset the chain error alarm until the failure is identified and repaired. If robot use is continued with one of the duplicate circuits being faulty, safety may not be guaranteed when the other circuit fails.

⚠ CAUTION

- 1 The state of this alarm is preserved by software. After correcting the cause of the alarm, reset the chain error alarm according to the chain error reset procedure described later.
- 2 Until a chain error is reset, no ordinary reset operation must be performed. If an ordinary reset operation is performed before chain error resetting, the message "SRVO-237 Chain error cannot be reset" is displayed on the teach pendant.

(A-cabinet) (B-cabinet)

Fig.3.5 (z) SRVO-230 Chain 1 (+24V) abnormal a, b SRVO-231 Chain 2 (0V) abnormal a, b

Alarm history display method

- 1. Press the screen selection key on the teach pendant.
- 2. Select [4 ALARM] on the teach pendant.
- 3. Press F3 [HIST] on the teach pendant.

Chain error reset procedure

! CAUTION

Do not perform this operation until the cause of the alarm is corrected.

<Method 1>

- 1. Press the emergency stop button.
- 2. Press the screen selection key on the teach pendant.
- 3. Select [0 NEXT PAGE] on the teach pendant.
- 4. Press [6 SYSTEM] on the teach pendant.
- 5. Press [7 SYSTEM SETTING] on the teach pendant.
- 6. Find "28" Chain Error Reset Execution.
- 7. Press F3 on the teach pendant to reset "Chain Error".

<Method 2>

- 1. Press the screen selection key on the teach pendant.
- 2. Select [4 ALARM] on the teach pendant.
- 3. Press F4 [CHAIN RESET] on the teach pendant.

SRVO-232 NTED input

(Explanation) In the teach mode, the NTED signal connected to the connector (CRMA96) on the emergency stop board was placed in the open state.

(Action 1) Check the operation of the device connected to NTED.

(Action 2) Replace the teach pendant.

(Action 3) Replace the teach pendant cable.

(Action 4) Replace the emergency stop board

(Action 5) Check the mode switch and its cable. Replace them if a defect is found.

SRVO-233 TP disabled in T1, T2/Door open

(Explanation) Teach pendant is disabled when the mode switch is T1 or T2.

Or controller door is opened.

(Action 1) Enable the teach pendant in teaching operation. In other case the mode switch should be AUTO mode.

(Action 2) Close the controller door, if open.

(Action 3) Replace the teach pendant.

(Action 4) Replace the teach pendant cable.

(Action 5) Replace the mode switch.

(Action 6) Replace the emergency stop board.

(Action 7) Replace the 6-Axis servo amplifier.

SRVO-235 Short term Chain abnormal

(Explanation) Short term single chain failure condition is detected.

- Cause of this alarm is;
 - Half release of DEADMAN switch
 - Half operation of emergency stop switch.
- (Action 1) Cause the same error to occur again, and then perform resetting.
- (Action 2) Replace the emergency stop board.
- (Action 3) Replace the 6-Axis servo amplifier.

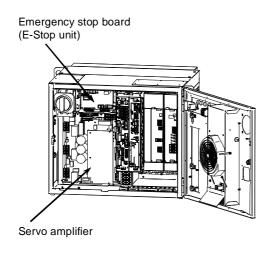
SRVO-251 DB relay abnormal (G: i A: j)

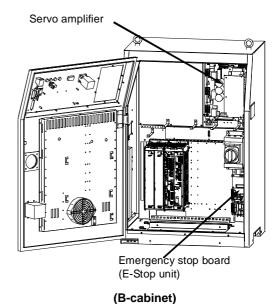
(Explanation) An abnormality was detected in the internal relay (DB relay) of the servo amplifier.

(Action 1) Replace the servo amplifier. (Action 2) Replace the E-stop unit.

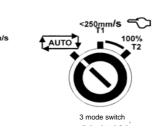
SRVO-252 Current detect abnl (G: i A: j)

(Explanation) An abnormality was detected in the current detection circuit inside the servo


amplifier.


(Action) Replace the servo amplifier.

SRVO-253 Amp internal over heat (G:%d A:%d)


(Explanation) An overheat was detected inside the servo amplifier.

(Action) Replace the servo amplifier.

(A-cabinet)

(Mode switch)

Fig.3.5 (aa) SRVO-232 NTED input SRVO-233 TP disabled in T1, T2/Door open SRVO-235 Short term Chain abnormal SRVO-251 DB relay abnormal SRVO-252 Current detect abnl SRVO-253 Amp internal over heat

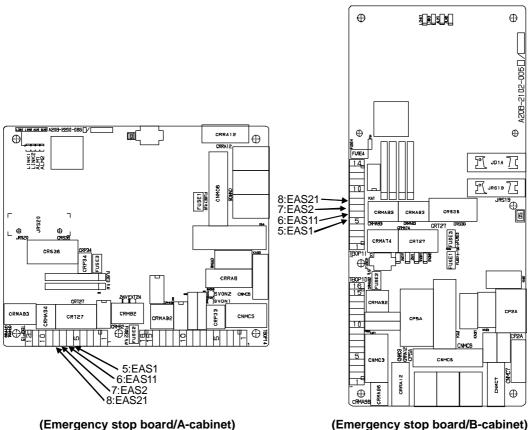
SRVO-266 FENCE1 status abnormal **SRVO-267 FENCE2** status abnormal

(Explanation) A chain alarm was detected with the EAS (FENCE) signal.

(Action 1) Check whether the circuitry connected to the dual input signal (EAS) is faulty.

Check whether the timing of the dual input signal (EAS) satisfies the timing (Action 2) specification

(See Subsection 3.2.5, Table 3.2.5 in CONNECTIONS).


(Action 3) Replace the emergency stop board.

WARNING

If this alarm is issued, do not reset the chain error alarm until the failure is identified and repaired. If robot use is continued with one of the duplicate circuits being faulty, safety may not be guaranteed when the other circuit fails.

NOTE

For the procedure of recovery from this alarm, see the descriptions of SRVO-230 and SRVO-231.

(Emergency stop board/A-cabinet)

Fig.3.5 (ab) SRVO-266 FENCE1 status abnormal SRVO-267 FENCE2 status abnormal

SRVO-268 SVOFF1 status abnormal SRVO-269 SVOFF2 status abnormal

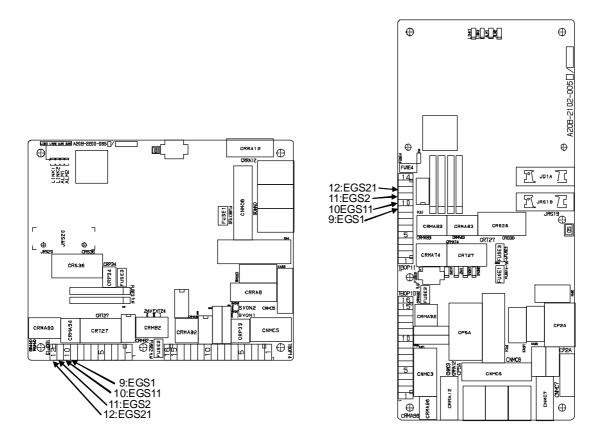
(Explanation) A chain alarm was detected with the EGS (SVOFF) signal.

(Action 1) Check whether the circuitry connected to the dual input signal (EGS) is faulty.

(Action 2) Check whether the timing of the dual input signal (EGS) satisfies the timing

specification

(See Subsection 3.2.5, Fig 3.2.5(c) in CONNECTIONS).


(Action 3) Replace the emergency stop board.

⚠ WARNING

If this alarm is issued, do not reset the chain error alarm until the failure is identified and repaired. If robot use is continued with one of the duplicate circuits being faulty, safety may not be guaranteed when the other circuit fails.

NOTE

For the procedure of recovery from this alarm, see the descriptions of SRVO-230 and SRVO-231.

(Emergency stop board/A-cabinet)

(Emergency stop board/B-cabinet)

Fig.3.5 (ac) SRVO-268 SVOFF1 status abnormal SRVO-269 SVOFF2 status abnormal

SRVO-270 EXEMG1 status abnormal SRVO-271 EXEMG2 status abnormal

(Explanation) A chain alarm was detected with the EES (EXEMG) signal.

(Action 1) Check whether the circuitry connected to the dual input signal (EES) is faulty.

(Action 2) Check whether the timing of the dual input signal (EES) satisfies the timing specification

(See Subsection 3.2.5, Fig 3.2.5(c) in CONNECTIONS).

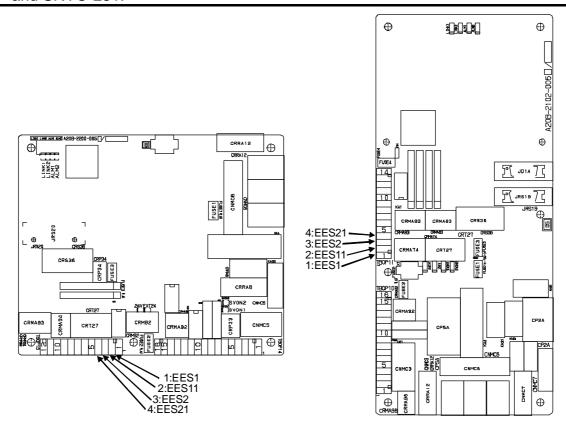
(Action 3) Replace the teach pendant cable.

(Action 4) Replace the teach pendant.

(Action 5) Replace the emergency stop board.

(Action 6) Replace the emergency stop switch on the operator's panel.

Before executing the (Action 7), perform a complete controller back-up to save all your programs and settings.


(Action 7) Replace the main board.

↑ WARNING

If this alarm is issued, do not reset the chain error alarm until the failure is identified and repaired. If robot use is continued with one of the duplicate circuits being faulty, safety may not be guaranteed when the other circuit fails.

NOTE

For the procedure of recovery from this alarm, see the descriptions of SRVO-230 and SRVO-231.

(Emergency stop board/A-cabinet)

(Emergency stop board/B-cabinet)

Fig.3.5 (ad) SRVO-270 EXEMG1 status abnormal SRVO-271 EXEMG2 status abnormal

SRVO-274 NTED1 status abnormal SRVO-275 NTED2 status abnormal

(Explanation) A chain alarm was detected with the NTED signal.

(Action 1) This alarm may be issued when the DEADMAN switch is pressed to a proper position or is operated very slowly. In such a case, release the DEADMAN switch once completely then press the DEADMAN switch again.

- When the NTED signal is not used, skip Action 2 and 3 and go to Action 4

(Action 2) Check whether the circuitry connected to the dual input signal (NTED) is faulty.

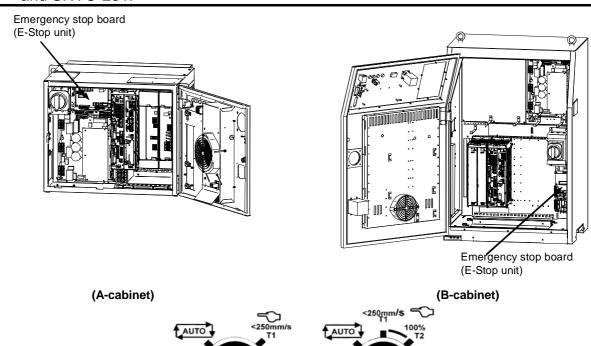
(Action 3) Check whether the timing of the dual input signal (NTED) satisfies the timing specification

(See Subsection 3.2.5, Fig 3.2.5(c) in CONNECTIONS).

(Action 4) Replace the teach pendant cable.

(Action 5) Replace the teach pendant.

(Action 6) Replace the emergency stop board.


(Action 7) Replace the mode switch on the operator's panel.

↑ WARNING

If this alarm is issued, do not reset the chain error alarm until the failure is identified and repaired. If robot use is continued with one of the duplicate circuits being faulty, safety may not be guaranteed when the other circuit fails.

NOTE

For the procedure of recovery from this alarm, see the descriptions of SRVO-230 and SRVO-231.

(Mode switch)
Fig.3.5 (ae) SRVO-274 NTED1 status abnormal
SRVO-275 NTED2 status abnormal

SRVO-277 Panel E-stop (SVEMG abnormal)

(Explanation) The emergency stop line was not disconnected although the emergency stop button on the operator's panel was pressed.

(Action 1) Replace the emergency stop board. (Action 2) Replace the 6-Axis servo amplifier.

SRVO-278 TP E-stop (SVEMG abnormal)

(Explanation) The emergency stop line was not disconnected although the emergency stop button on the teach pendant was pressed.

(Action 1) Replace the teach pendant.

(Action 2) Replace the teach pendant cable.
 (Action 3) Replace the emergency stop board.
 (Action 4) Replace the 6-Axis servo amplifier.

NOTE

This alarm may be issued if the emergency stop button is pressed very slowly.

SRVO-280 SVOFF input

(Explanation) The external contact connected to EGS1-EGS11 or EGS2-EGS21 of the terminal block TBOP13(A-cabinet) or TBOP11(B-cabinet) on the emergency stop board is open.

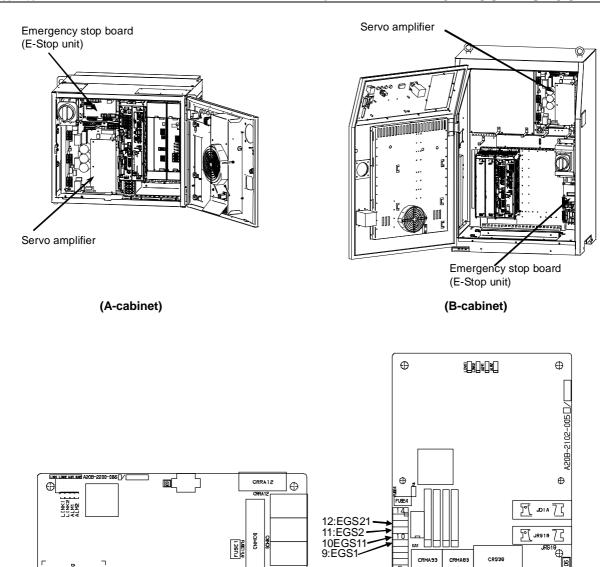
(Action 1) If external circuitry is connected to EGS1-EGS11 or EGS2-EGS21 of the terminal block TBOP13(A-cabinet) or TBOP11(B-cabinet) on the emergency stop board, check the external circuitry.

(Action 2) If this signal is not used, make a connection between EGS1 and EGS11 and between EGS2 and EGS21 of the terminal block TBOP13(A-cabinet) or TBOP11(B-cabinet) on the emergency stop board.

(Action 3) Replace the emergency stop board.

↑ WARNING

In a system using the SVOFF signal, it is very dangerous to disable the signal when a connection is made between EGS1 and EGS11 and between EGS2 and EGS21 of TBOP13(A-cabinet) or TBOP11(B-cabinet). Never make such an attempt. If a temporary connection is needed for operation, separate safety measures must be taken.


SRVO-281 SVOFF input (SVEMG abnormal)

(Explanation) The emergency stop line was not disconnected although the contact connected between EGS1 and EGS11 or between EGS2 and EGS21 of the terminal block TBOP13(A-cabinet) or TBOP11(B-cabinet) on the emergency stop board was open. The emergency stop circuit is faulty.

(Action 1) Check the switch and cable connected to EGS1-EGS11and EGS2-EGS21 on TBOP13(A-cabinet) or TBOP11(B-cabinet). If the cable is abnormal, replace it.

(Action 2) Replace the emergency stop board.

(Action 3) Replace the 6-Axis servo amplifier.

(Emergency stop board/A-cabinet)

9:EGS1 10:EGS11 11:EGS2 12:EGS21

(Emergency stop board/B-cabinet)

СИИСВ

CP5A

CRRA12

 \oplus

CP2A

Fig.3.5 (af)

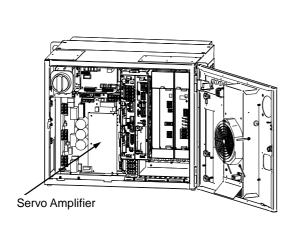
SRVO-277 Panel E-stop (SVEMG abnormal)

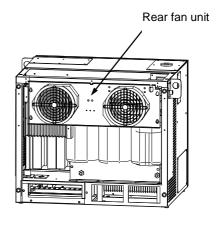
SRVO-278 TP E-stop (SVEMG abnormal)

SRVO-280 SVOFF input

SRVO-281 SVOFF input (SVEMG abnormal)

CRRAS


SRVO-291 IPM over heat (G:i A:j)


(Explanation) IPM on the servo amplifier is overheated.

(Action 1) Check whether the fan for cabinet ventilation is stopped and also check whether the vent hole is clogged. If necessary, clean or replace them.

(Action 2) If SRVO-291 is issued when the robot operating condition is severe, check the robot operating condition then relax the condition when possible.

(Action 3) If SRVO-291 is issued frequently, replace the servo amplifier.

(A-cabinet)

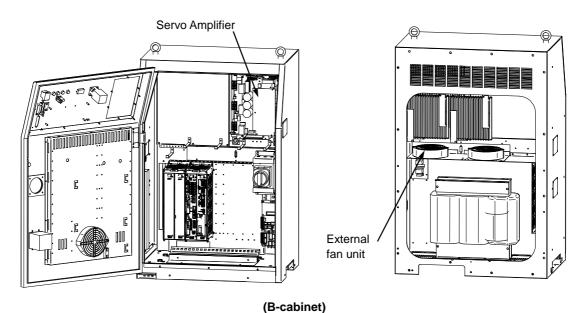


Fig.3.5 (ag) SRVO-291 IPM over heat

SRVO- 293 HCAL(PS) alarm(G:%d A:%d)

(Explanation) The Power Supply(αiPS) or the servo amplifier is faulty.

- (Action 1) Replace the servo amplifier(6-axis amplifier, αiSV).
- (Action 2) Replace the Poewr Supply(αiPS).

SRVO- 295 SVM COM alarm(G:%d A:%d)

(Explanation) A communication error occurred in the 6-axis amplifier or between the Power Supply(αi PS) and the servo amplifier.

- (Action 1) Replace the 6-axis amplifier.
- (Action 2) Replace the cable for communication the Power Supply(αiPS) and servo amplifier.
- (Action 3) Replace the Power Supply(αiPS).
- (Action 4) Replace the servo amplifier (αiSV).

SRVO- 297 Improper input power (G:%d A:%d)

- (Explanation) The 6-axis servo amplifier or the power supply(αiPS) has detected the input voltage phase lack.
- (Action 1) Check the input voltage of the controller whether phase is not lack.
- (Action 2) Make sure that the 6-axis servo amplifier CRRA12 and emergency stop board CRRA12 connector are connected tightly. If the power supply(αiPS) is installed, make sure that the power supply(αiPS) CX48 connector is connected tightly.
- (Action 3) Measure the secondary voltage between each phase at the main breaker, if phase loss is detected, replace the main breaker.
- (Action 4) Measure the secondary voltage between each phase at the transformer, if phase loss is detected, replace the transformer.
- (Action 5) Replace the E-stop unit.
- (Action 6) Replace the 6-axis servo amplifier.
- (Action 7) Replace the power supply(αiPS).

SRVO-300 Hand broken/HBK disabled SRVO-302 Set Hand broken to ENABLE

- (Explanation) Although HBK was disabled, the HBK signal was input.
- (Action 1) Press RESET on the teach pendant to release the alarm.
- (Action 2) Check whether the hand broken signal is connected to the robot. When the hand broken signal circuit is connected, enable hand broken.

 (See Subsection 5.5.3 in CONNECTIONS)

SRVO-335 DCS OFFCHK alarm a, b

- (Explanation) A failure was detected in the safety signal input circuit.
- (Action 1) Replace the emergency stop board.
- (Action 2) In case of B-cabinet, replace the optional safety I/O board.

SRVO-348 DCS MCC OFF alarm a, b

- (Explanation) A command was issued to turn off the magnetic contactor, but the magnetic contactor was not turned off.
- (Action 1) This action is applicable to the B-Cabinet only.

 If a signal is connected to the E-stop unit CRMA74, check whether there is a problem in the connection destination.
- (Action 2) This action is applicable to the B-Cabinet only.

 Check whether the FUSE4 on emergency stop board. If the fuse is blown, see Article 3.6.(3).
- (Action 3) This action is applicable to the A-cabinet and B-cabinet. Replace the E-stop unit.
- (Action 4) This action is applicable to the A-cabinet and B-cabinet. Replace the 6-Axis servo amplifier.

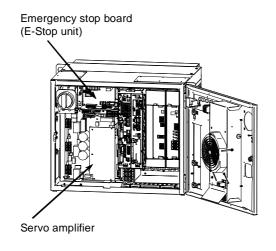
SRVO-349 DCS MCC ON alarm a, b

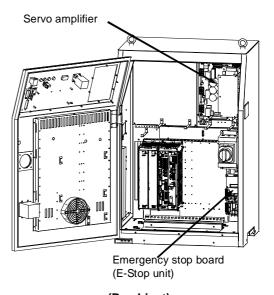
(Explanation) A command was issued to turn on the magnetic contactor, but the magnetic contactor was not turned on.

(Action 1) Replace the E-stop unit.

(Action 2) Replace the 6-Axis servo amplifier.

SRVO-370 SVON1 status abnormal SRVO-371 SVON2 status abnormal


(Explanation) A chain alarm was detected with the emergency stop board internal signal (SVON). (Action) Replace the emergency stop board.


↑ WARNING

If this alarm is issued, do not reset the chain error alarm until the failure is identified and repaired. If robot use is continued with one of the duplicate circuits being faulty, safety may not be guaranteed when the other circuit fails.

NOTE

For the procedure of recovery from this alarm, see the descriptions of SRVO-230 and SRVO-231.

(A-cabinet)

(B-cabinet)

Fig.3.5 (ah) SRVO-335 DCS OFFCHK alarm a, b SRVO-348 DCS MCC OFF alarm a, b SRVO-349 DCS MCC ON alarm a, b SRVO-370 SVON1 status abnormal a, b SRVO-371 SVON2 status abnormal a, b

SRVO-372 OPEMG1 status abnormal SRVO-373 OPEMG2 status abnormal

(Explanation) A chain alarm was detected with the emergency stop button on the operator's panel.

(Action 1) Replace the emergency stop board. (Action 2) Replace the teach pendant cable.

(Action 3) Replace the teach pendant.

(Action 4) Replace the emergency stop button on the operator's panel.

⚠ WARNING

If this alarm is issued, do not reset the chain error alarm until the failure is identified and repaired. If robot use is continued with one of the duplicate circuits being faulty, safety may not be guaranteed when the other circuit fails.

NOTE

For the procedure of recovery from this alarm, see the descriptions of SRVO-230 and SRVO-231.

SRVO-374 MODE11 status abnormal SRVO-375 MODE12 status abnormal SRVO-376 MODE21 status abnormal SRVO-377 MODE22 status abnormal

(Explanation) A chain alarm was detected with the mode switch signal.

(Action 1) Check the mode switch and its cable. Replace them if a defect is found.

(Action 2) Replace the emergency stop board.

⚠ WARNING

If this alarm is issued, do not reset the chain error alarm until the failure is identified and repaired. If robot use is continued with one of the duplicate circuits being faulty, safety may not be guaranteed when the other circuit fails.

NOTE

For the procedure of recovery from this alarm, see the descriptions of SRVO-230 and SRVO-231.

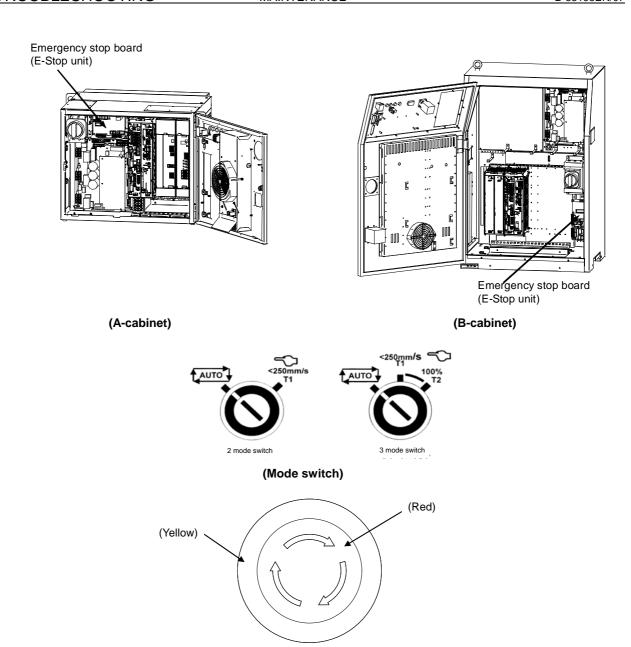


Fig.3.5 (ai) SRVO-372 OPEMG1 status abnormal a, b SRVO-373 OPEMG2 status abnormal a, b SRVO-374 MODE11 status abnormal a, b SRVO-375 MODE12 status abnormal a, b SRVO-376 MODE21 status abnormal a, b SRVO-377 MODE22 status abnormal a, b

(Emergency stop button)

SRVO-378 SFDIxx status abnormal

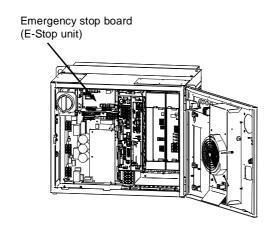
(Explanation) A chain alarm was detected with the SFDI signal. xx shows signal name.

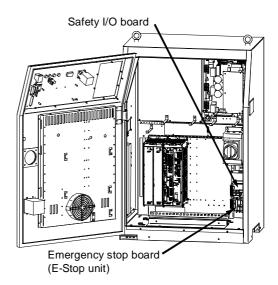
(Action 1) Check whether the circuitry connected to the dual input signal (SFDI) is faulty.

(Action 2) Check whether the timing of the dual input signal (SFDI) satisfies the timing

specification. (See Subsection 3.2.5, Fig 3.2.5(c) in CONNECTIONS).

(Action 3) In case of B-cabinet, replace the optional safety I/O board.


(Action 4) Replace the emergency stop board.


↑ WARNING

If this alarm is issued, do not reset the chain error alarm until the failure is identified and repaired. If robot use is continued with one of the duplicate circuits being faulty, safety may not be guaranteed when the other circuit fails.

NOTE

For the procedure of recovery from this alarm, see the descriptions of SRVO-230 and SRVO-231.

(A-cabinet) (B-cabinet)

Fig.3.5 (aj) SRVO-378 SFDIxx status abnormal

SRVO-450 Drvoff circuit fail(G:%d A:%d)

(Explanation) The two drive off inputs are not in the same status.

(Action 1) Check the line of the two drive off inputs.

(Action 2) Replace the servo amplifier (6-axis servo amplifier, αi SV).

SRVO-451 Internal S-BUS fail(G:%d A:%d)

(Explanation) An error is found in the serial bus communication in the servo amplifier.

(Action 1) Replace the servo amplifier (6-axis servo amplifier, αiSV).

SRVO-452 ROM data failure(G:%d A:%d)

(Explanation) An error is found in the ROM data in the servo amplifier. (Action 1) Replace the servo amplifier (6-axis servo amplifier, αiSV).

SRVO-453 Low volt driver(G:%d A:%d)

(Explanation) Driver supply voltage in the servo amplifier is low.

(Action 1) Replace the servo amplifier (6-axis servo amplifier, αi SV).

SRVO-454 CPU BUS failure(G:%d A:%d)

(Explanation) An error was found in CPU bus data in the amplifier.

(Action 1) Replace the servo amplifier (6-axis servo amplifier, αiSV).

SRVO-455 CPU watch dog(G:%d A:%d)

(Explanation) An error occurred in CPU operation in the amplifier.

(Action 1) Replace the servo amplifier (6-axis servo amplifier, αi SV).

SRVO-456 Ground fault (G:%d A:%d)

(Explanation) An error is found in the motor current detection data in the servo amplifier.

(Action 1) Replace the servo amplifier (6-axis servo amplifier, αi SV).

SRVO-457 Ground fault(PS) (G:%d A:%d)

(Explanation) Ground fault occurs in the motor power line.

(Action 1) Check the ground fault of the motor and the motor power cable.

(Action 2) Replace the Power Supply(αiPS).

(Action 3) Replace the servo amplifier (6-axis servo amplifier, αiSV).

SRVO-458 Soft thermal(PS) (G:%d A:%d)

(Explanation) The root-mean-square current value which is calculated internally by the Power Supply (αi PS) exceeds the maximum permissible value.

This alarm is issued to protect the Power Supply $(\alpha i PS)$ from damage of thermal destruction

Probable cause:

- 1. Overload
- 2. External force to the robot
- 3. Disconnection of the brake cable
- 4. Insufficient torque by low voltage of power supply
- 5. Brake failure (includes mis-setting of brake number for auxiliary axis)
- 6. Aux. brake unit failure for aux. axis
- 7. Power Supply(α*i*PS) failure
- 8. Amplifier failure
- (Action 1) Check whether the duty and applied load exceed the rating. If so, reduce the duty or applied load.
- (Action 2) Check whether the robot is pushed or pulled by external force. If so, remove the external force to the robot or modify the taught point.
- (Action 3) Check whether the brake cable/connector are connected correctly.
- (Action 4) Measure the supplied voltage. Then, check whether the voltage is matched to the controller specification.
- (Action 5) Check whether the motor brake is released properly when Reset or the robot moves. First of all, check whether the setting of brake number is correct when this alarm occurs on auxiliary axis.
- (Action 6) When this alarm occurs on the auxiliary axis which brake is controlled by the aux. brake unit, check the fuse on the aux. brake unit.
- (Action 7) Replace the Power Supply(αiPS).
- (Action 8) Replace the servo amplifier (6-axis servo amplifier, αiSV).

SRVO-459 Excess regeneration2%s (G:%d A:%d)

(Explanation) An error is found in the discharge circuit in the 6-axis amplifier.

(Action 1) Replace the 6-axis servo amplifier.

SRVO-460 Illegal parameter%s (G:%d A:%d)

(Explanation) An error is found in the setting of the parameters in the Power Supply(αi PS) or 6-axis amplifier.

(Action 1) Replace the Power Supply(αi PS). (Action 2) Replace the 6-axis servo amplifier.

SRVO-461 Hardware error%s (G:%d A:%d)

(Explanation) An error is found in the circuit in the Power Supply(αi PS) or 6-axis amplifier.

(Action 1) Replace the Power Supply(αi PS). (Action 2) Replace the 6-axis servo amplifier.

SRVO-477 Calibration data error

(Explanation) The force sensor calibration data are wrong.

(Action) Please load correct force sensor calibration data and apply them again.

SRVO-478 Temperature difference too large

(Explanation) The force sensor temperature difference is too large.

(Action) Please make sure that the environment temperature does not change greatly, and

then restart the controller.

If the error is not cleared, document the events that led to the error and contact your

FANUC technical representative.

SRVO-479 Temperature changes too fast

(Explanation) The force sensor temperature changes too fast.

(Action) Please make sure that the environment temperature does not change greatly, and

then restart the controller.

If the error is not cleared, document the events that led to the error and contact your

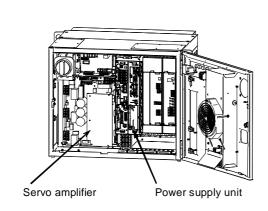
FANUC technical representative.

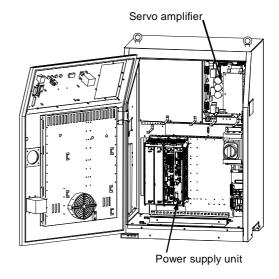
SRVO-480 FORCE alarm %x,%x

(Explanation) Force sensor error.(Action1) Restart the controller.(Action2) Replace the sensor cable.

If the error is not cleared, document the events that led to the error and contact

your FANUC technical representative.


3.6 FUSE-BASED TROUBLESHOOTING


This section describes the alarms and symptoms generated and actions required when the fuses installed on the printed circuit boards and units have blown.

(1) When the fuses of the power supply unit have blown

F1: Fuse for AC input (A60L-0001-0450#8R0) F3: Fuse for +24 E (A60L-0001-0046#7.5) F4: Fuse for +24 V (A60L-0001-0046#7.5)

Name	Symptom observed when fuse has blown	Action
F1	The LED (PIL: Green) of the power supply unit does not light, and the power cannot be turned on.	 Check the units (fans), printed-circuit board and cables connected to the CP2 and CP3 connectors of the power supply unit to see if there is any short circuit. Replace the power supply unit.
F3	The teach pendant displays "SRVO-217 E-STOP Board not found" or "PRIO-091 E-Stop PCB comm. Error "	Check the printed circuit boards, units, and cables using +24 E according to the power supply system diagram. Replace a faulty printed circuit board, unit or cable if any. Replace the power supply unit.
F4	The power, when turned on, is immediately turned off. At this time, the LED (ALM: Red) lights.	Check the printed circuit boards, units, servo amplifier and cables using +24 V according to the power supply system diagram. Replace a faulty printed circuit board, unit, servo amplifier or cable if any. The LED of ALM is turned off by pressing the OFF button once. Replace the power supply unit.

(A-cabinet)

(B-cabinet)

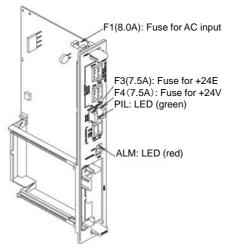


Fig.3.6(a) Fuse on the Power supply unit

(2) Servo amplifier fuse

FS1: For generation of the power to the amplifier control circuit (A60L-0001-0290#LM32C)

FS2: For protection of the 24V output to the end effector, XROT, and XHBK

(A60L-0001-0290#LM32C)

FS3: For protection of the 24V output to the regenerative resister

(A60L-0001-0290#LM32C)

Name	Symptom observed when fuse has blown	Action
FS1	All LEDs on the servo amplifier go out. The FSSB disconnection or initialization alarm is displayed on the teach pendant.	Replace the servo amplifier.
FS2	The 6ch amplifier fuse blown (SRVO-214), Hand broken (SRVO-006), and Robot overtravel (SRVO-005) are displayed on the teach pendant.	 Check +24VF used by the end effector for a ground fault. Check the robot connection cable and the robot's internal cable. Replace the servo amplifier. In case of M-3<i>i</i>A, check the fan motor inside the robot (option).
FS3	The 6ch amplifier fuse blown (SRVO-214), DCAL alarm (SRVO-043) are displayed on the teach pendant.	 Check the regenerative resister, and replace it if required. Replace the servo amplifier.

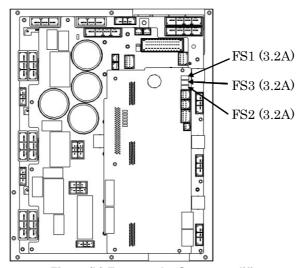


Fig.3.6(b) Fuse on the Servo amplifier

(3) Emergency stop board fuses

FUSE1:	For internal power supply circuit	(A60L-0001-0290#LM10C)
FUSE2:	For +24EXT line (emergency stop line) protection	(A60L-0001-0290#LM10C)
FUSE3:	For teach pendant power supply circuit	(A60L-0001-0290#LM10C)
FUSE4:	For SFDI protection (B-cabinet only)	(A60L-0001-0290#LM10C)

Name	Symptom observed when fuse has blown	Action
FUSE1	The teach pendant displays "SRVO-217	1 Check the cable between emergency stop board and
	E-STOP Board not found" or "PRIO-091	main board. Replace them if necessary.
	E-Stop PCB comm. Error ".	2 Replace the E-STOP unit.
		Before executing the (Action 3), perform a complete
		controller back-up to save all your programs and
		settings.
		3 Replace the main board.
FUSE2	The teach pendant displays "SRVO-213 E-STOP Board FUSE2 blown"	 If an alarm is issued when the fuse has not blown, check the voltages of EXT24V and EXT0V (TBOP14 for A-cabinet or TBOP10 for B-cabinet). If EXT24V or INT0V is not used, check the jumper pin between EXT24V and INT24V or between EXT0V and INT0V. If the FENCE, SVOFF, and EXEMG are used, these signals may be connected to 0V or ground. Check these cables. Replace the operator's panel cable(CRT27). Replace the emergency stop board.
		5 Replace the teach pendant cable.6 Replace the teach pendant.
FUSE3	The display on the teach pendant disappears.	Check the teach pendant cable for a fault, and replace it if required.
		2 Check the teach pendant for a fault, and replace it if required.
		3 Replace the emergency stop board.
FUSE4	(B-cabinet only)	1 Check the SFDI cable connections, and replace it if
	The teach pendant displays "SRVO-348 DCS	required.
	MCC OFF Alarm"	Check the operator's panel cable (CRT27), and
		replace it if required.
		3 Replace the E-STOP unit.

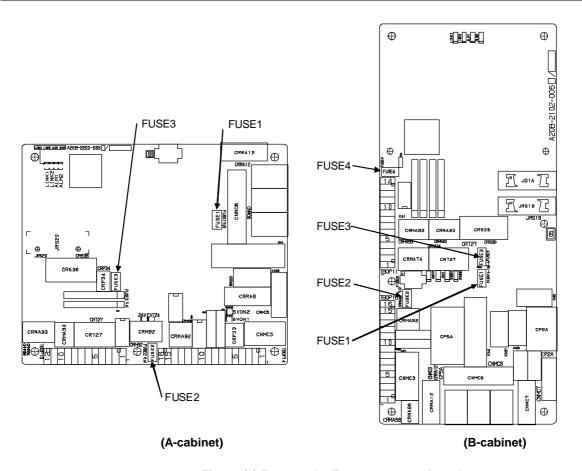


Fig.3.6 (c) Fuse on the Emergency stop board

(4) Fuse on the process I/O board JA,JB

FUSE1: Fuse for +24E

(A60L-0001-0046#2.0)

Name	Symptom observed when fuse has blown	Action
FUSE1	The LED (ALM-2 or FALM) on the process I/O board lights, and an alarm such as IMSTP input	Check if the cables and peripheral equipment connected to the process I/O board are normal.
	is output on the teach pendant. (The display data depends on state of peripheral equipment connection.)	2 Replace the process I/O board.

Fuse location is common to JA and JB. The following is figure of JA.

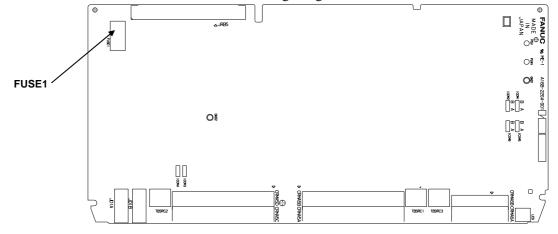


Fig.3.6 (d) Fuse on the Process I/O board JA,JB

(5) Fuse on the process I/O MA,MB

FUSE1: Fuse for +24E (A60L-0001-0046#1.0)

Name	Symptom observed when fuse has blown	Action
FUSE1	The LED (ALM1 or FALM) the process I/O board lights.	Check if the cables and peripheral devices connected to the process I/O board are normal.
		Replace the process I/O board.

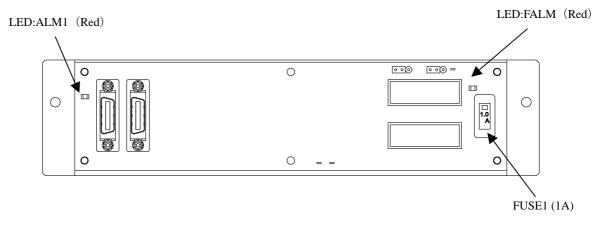


Fig.3.6 (e) Fuse on the process I/O board MA

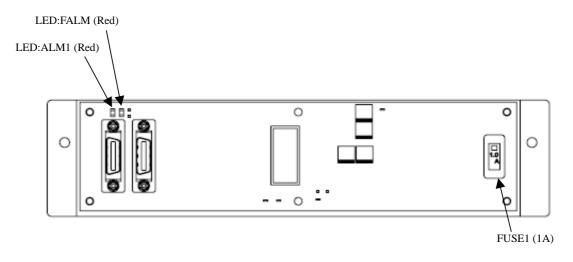


Fig.3.6 (f) Fuse on the process I/O board MB

(6) Fuse on the sensor I/F unit for CR-35*i*A

FUSE: For internal power supply circuit (A60L-0001-0290#LM20)

Name	Symptom observed when fuse has blown	Action
FUSE	The LED of the sensor I/F unit lights.	 Check if the cables and peripheral devices connected to the sensor I/F unit are normal. Replace the sensor I/F unit.

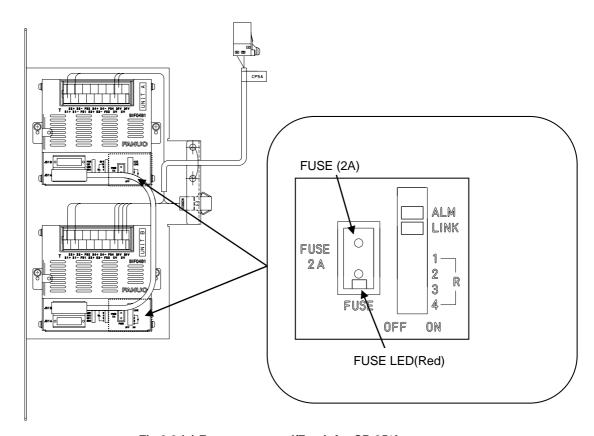


Fig.3.6 (g) Fuse on sensor I/F unit for CR-35iA

3.7 TROUBLESHOOTING BASED ON LED INDICATIONS

The printed circuit boards and servo amplifier are provided with alarm LEDs and status LEDs. The LED status and corresponding troubleshooting procedures are described below.

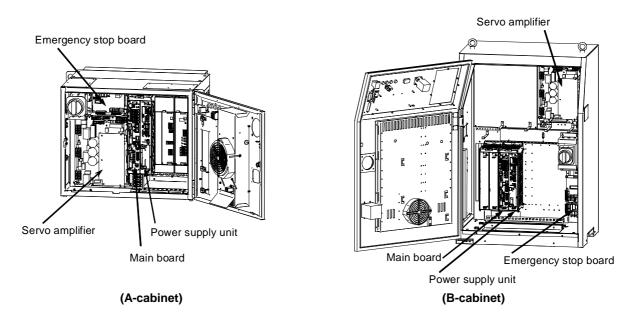


Fig.3.7 Troubleshooting based on LED indication

3.7.1 Troubleshooting Using the LEDS on the Main Board

(1) Troubleshooting using the status display LED

To troubleshoot an alarm that arises before the teach pendant is ready to display, check the status LEDs (green) on the main board at power-on. After power-on, the LEDs light as described in steps 1 to end, in the order described. If an alarm is detected, the step in which the alarm occurred can be determined from which LEDs are lit.

MAINTENANCE

	Step	LED	Action to be taken
1:	After power-on, all LEDs are lit.	D1 D2 D3 D4	[Action1] Replace the CPU card. * [Action2] Replace the main board.
2:	Software operation start-up.	D1 D2 D3 D4	[Action1] Replace the CPU card. * [Action2] Replace the main board.
3:	The initialization of dram on the CPU card is completed.	D1 D2 D3 D4	[Action1] Replace the CPU card. * [Action2] Replace the main board.
4:	The initialization of DPRAM on the communication IC is completed.	D1 D2 D3 D4	[Action1] Replace the CPU card. * [Action2] Replace the main board. * [Action3] Replace the FROM/SRAM module.
5:	The initialization of the communication IC is completed.	D1 D2 D3 D4	[Action1] Replace the CPU card. * [Action2] Replace the main board. * [Action3] Replace the FROM/SRAM module.
6:	The loading of the basic software is completed.	D1 D2 D3 D4	* [Action1] Replace the main board. * [Action2] Replace the FROM/SRAM module.
7:	Basic software start-up.	D1 D2 D3 D4	* [Action1] Replace the main board. * [Action2] Replace the FROM/SRAM module. * [Action3] Replace the power supply unit.
8:	Start-up of communication with the teach pendant.	D1 D2 D3 D4	* [Action1] Replace the main board. [Action2] Replace the FROM/SRAM module.
9:	The loading of optional software is completed.	D1 D2 D3 D4	* [Action1] Replace the main board. [Action2] Replace the process I/O board.

Step	LED	Action to be taken
10: DI/DO initialization	D1 D2 D3 D4	[Action1] Replace the FROM/SRAM module. [Action2] Replace the main board.
11: The preparation of the SRAM module is completed.	D1 D2 D3 D4	[Action1] Replace the axis control card. * [Action2] Replace the main board. [Action3] Replace the servo amplifier.
12: Axis control card initialization	D1 D2 D3 D4	[Action1] Replace the axis control card. * [Action2] Replace the main board. [Action3] Replace the servo amplifier.
13: Calibration is completed.	D1 D2 D3 D4	[Action1] Replace the axis control card. * [Action2] Replace the main board. [Action3] Replace the servo amplifier.
14: Start-up of power application for the servo system	D1 D2 D3 D4	* [Action1] Replace the main board.
15: Program execution	D1 D2 D3 D4	* [Action1] Replace the main board. [Action2] Replace the process I/O board.
16: DI/DO output start-up.	D1 D2 D3 D4	* [Action1] Replace the main board.
17: Initialization is terminated.	D1 D2 D3 D4	Initialization has ended normally.
18: Normal status	□	Status LEDs 1 and 2 blink when the system is operating normally.

^{*} If the main board or FROM/SRAM module is replaced, the contents of memory (parameters, specified data, etc.) will be lost. Before you replace the unit, therefore, make a backup copy of the data.

If an alarm is issued, data backup may be disabled. So, back up the contents of memory routinely.

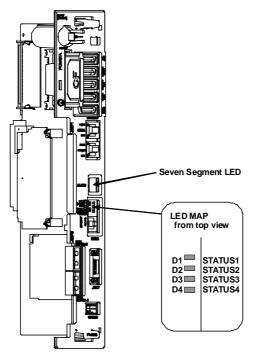


Fig.3.7.1 LED on the main board

(2) TROUBLESHOOTING BY 7-SEGMENT LED INDICATOR

7-segment LED indicator	Description		
B.	[Description] A parity alarm condition has occurred in DRAM on the CPU card installed on the main board. [Action1] Replace the CPU card.		
B.	 [Action2] Replace the main board. [Description] A parity alarm condition has occurred in SRAM on the FROM/SRAM module installed on the main board. [Action1] Replace the FROM/SRAM module. [Action2] Replace the main board. [Description] A bus error has occurred in the communication controller. [Action] Replace the main board. 		
B.	[Description] A parity alarm condition has occurred in DRAM controlled by the communication controller. * [Action] Replace the main board.		
5.	[Description] A servo alarm condition has occurred on the main board. [Action1] Replace the axis control card. * [Action2] Replace the main board. [Action3] If an option board is installed, replace the option board.		
B .	[Description] The SYSEMG alarm has occurred. [Action1] Replace the axis control card. [Action2] Replace the CPU card. * [Action3] Replace the main board.		
3.	[Description] The SYSFAIL alarm has occurred. [Action1] Replace the axis control card. [Action2] Replace the CPU card. * [Action3] Replace the main board. [Action4] If an option board is installed, replace the option board.		
	[Description] 5V is supplied to Main board. Above alarms do not occur.		

* If the main board or FROM/SRAM module is replaced, the contents of memory (parameters, specified data, etc.) will be lost. Before you replace the unit, therefore, make a backup copy of the data.

If an alarm is issued, data backup may be disabled. So, back up the contents of memory routinely.

3.7.2 Troubleshooting by LEDs on Power Supply Unit

LED indication		Failure description and required measure
F3 F4	[Description]	
(125V F 7.5A) (125V F 7.5A)	[Action1]	Check fuse F4 (+24V) on the power supply unit, and replace it if it has
		blown.
F3(+24E)	[Action2]	Check the printed-circuit boards powered by the DC power supplies
		(+5V, 15V, and +24V), the relevant units, and cables, and replace
PIL-	[Action3]	them if defective. Replace the power supply unit.
	[/ totiono]	replace the power supply time.
I 5 <≼∥∵∵∷ ∣		
DC OUTPUT: +24V 1A +24E 2A +24E 2A +		
P		
CP5 CP6 (+24%) (+24E)		
(1244) (124E)		
ALM-		
CONTROL		
CP4		
CF4		
F3 F4 (125V F 7.5A) (125V F 7.5A)	[Description]	If the PIL LED (Green) does not light, the power supply unit has not
	[Action1]	been supplied with 200 VAC. Check fuse F1 on the power supply unit, and replace it if it has blown.
38	[Action1]	For detailed causes of fuse blown out, please refer to Section 3.6.
F3(+24E)	[Action2]	Replace the power supply unit.
PIL-]]		
ା ⊉ ≨ଶ ଆ ₁ା ₁ା∦ା		
DC OUTPUT: 1-24V 1A 1-24E 2A 1-2-1 1-24E 2A 1-2-1 1-24E 2A		
CP5 CP6		
(+24V) (+24E)		
ALM-JO		
CONTROL		
CP4		

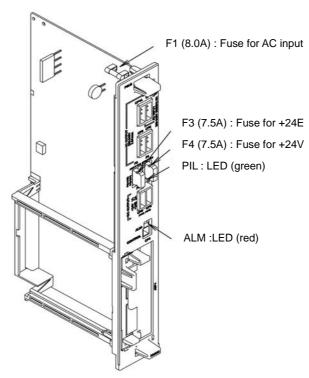


Fig.3.7.2 LEDs on the power supply unit

3.7.3 Troubleshooting by LED on the Emergency Stop Board

LED indication		Failure description and required measure
FU4	[Description]	When the LED (red) turned on, the fuse FU4 is brown. 24V for safety DI
(Red)		signal(SFDI) is not supplied.
(B-cabinet only)	[Action1]	Check the connection of SFDI on Safety I/O board.
	[Action2]	Check the operator's panel cable (CRT27), and replace it if required.
	[Action3]	Replace the E-STOP unit.
24V	[Description]	When the LED does not light, the +24E power for the teach pendant and
(Green)		internal circuit is not supplied.
	[Action1]	Check the CRP33(A-cabinet) or CP5A(B-cabinet) connector and check
		that 24 V is supplied. When 24 V is not supplied, check CP6 connector
		and fuse F3 of power supply unit.
	[Action2]	Replace the emergency stop board.
EXT24/24EXT	[Description]	When the LED(green) does not light, the EXT24V power for emergency
(Green)		stop circuit is not supplied.
	[Action1]	Check the voltages of EXT24V and EXT0V (TBOP14 for A-cabinet or
		TBOP10 for B-cabinet). If +EXT24V or EXT0V is not used, check the
		jumper pin between EXT24V and INT24V or between EXT0V and
		INTOV.
	[Action2]	If the FENCE, SVOFF, and EXEMG is used, these signals may be
		connected to 0V or ground. Check these cables.
	[Action3]	Replace the emergency stop board.
	[Action4]	Check the teach pendant cable, and replace it if required.
	[Action5]	Check the teach pendant, and replace it if required.
	[Action6]	Check the operator's panel cable (CRT27), and replace it if required.
SVON1/SVON2	[Description]	(6)
(Green)		the emergency stop board to the servo amplifier. When the SVON1 and
		SVON2 (green) turned on, the servo amplifier is ready to energize.

LED indication		Failure description and required measure
LINK1/LINK2	[Description]	Please see the Section 3.10. The operation mode is "I/O Link i ". If
(Green)		LINK1 or LINK2 state is "Blink (1:1 at high speed)", communication is at
		halt because of an alarm.
	[Action1]	Identify the cause according to the states of the red LED "ALM" stated
		below or information displayed on the TP screen.
ALM1/ALM2 (Red)	[Description]	Please see the Section 3.10. The operation mode is "I/O Link i ".
	[1] If the ALM	1 or ALM2 state is "Steadily ON", hardware may be defective.
	[Action1]	Check the cable between the main board and the emergency stop boards, and replace it if necessary.
	[Action2]	Replace the emergency stop board.
	[Action3]	Replace the main board.
	emergenc E-STOP u [Action1]	1 or ALM2 state is "Blink (1:1)", the communication between the y stop board and a unit connected to I/O Link i (E-STOP unit) to the nit is stopped, or there may be noise around the cable. Check the communication cable between the emergency stop board and the unit connected to I/O Link i (E-STOP unit), and replace it if necessary.
	[Action2]	Replace the unit connected to I/O Link <i>i</i> (E-STOP unit).
	[Action3]	Replace the emergency stop board
	[3] If the ALM	M1 or ALM2 state is "Blink (3:1)", a unit connected to I/O Link i (E-STOP
		e E-STOP unit may have power failure.
	[Action1]	Check fuse on a unit connected to I/O Link i (E-STOP unit) to the
		E-STOP unit, and replace it if it has blown.
	[Action2]	Replace the unit connected to I/O Link i (E-STOP unit).
	[Action3]	Replace the emergency stop board.

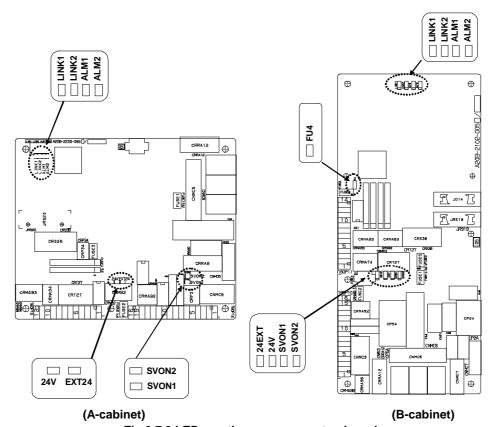


Fig.3.7.3 LEDs on the emergency stop board

3.7.4 Troubleshooting by Alarm LEDs on the Process I/O Board

Process I/O JA.JB

3.TROUBLESHOOTING

Process I/O JA,JB		
LED	Description and action to be taken	
STATUS 1 2 3 4 STATUS 1 2 3 4 ALARM	[Description] A communication alarm occurred between the main board and process I/O board. [Action1] Replace the process I/O board. * [Action2] Replace the main board. [Action3] Replace the I/O link connection cable.	e
STATUS 1 2 3 4 ALARM IN	[Description] A fuse on the process I/O board is blown. [Action1] Replace the blown fuse on the process I/O board. [Action2] Examine the cables and peripheral devices connected to the process I/O board. Replace any failed components. [Action3] Replace the process I/O board.	oard.

^{*} If the main board or FROM/SRAM module is replaced, the contents of memory (parameters, specified data, etc.) will be lost. Before you replace the unit, therefore, make a backup copy of the data.

If an alarm is issued, data backup may be disabled. So, back up the contents of memory routinely.

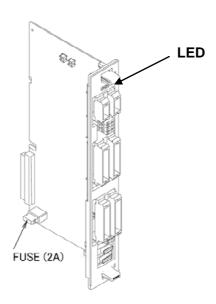


Fig.3.7.4 (a) LEDs on the Process I/O board JA/JB

Process I/O MA,MB

1.10000 1/0 1111 1/1112			
LED	Color	Description	
		[Explanation]	An alarm was issued during communication between the main board and the process I/O board.
ALM1	Red	[Measure 1]	Replace the process I/O board.
		[Measure 2]	Replace the I/O link connection cable.
		[Measure 3]	Replace the main board.
		[Explanation]	The fuse on the process I/O board was blown.
		[Measure 1]	Replace the fuse on the process I/O board.
FALM	Red	[Measure 2]	Check the cables and peripheral units connected to the process I/O
			board and replace the defective units.
		[Measure 3]	Replace the process I/O board.

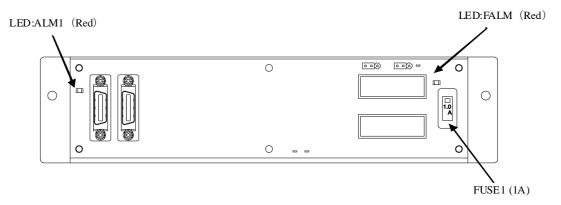


Fig.3.7.4 (b) LEDs on the process I/O board MA

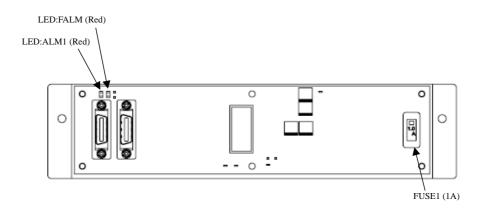


Fig.3.7.4 (c) LEDs on the process I/O board MB

3.7.5 Troubleshooting by LEDs on the 6-Axis Servo Amplifier

The 6-Axis servo amplifier has alarm LEDs. Troubleshoot the alarm indicated by the LEDs, referring also to the alarm indication on the teach pendant.

Check that the voltage is not higher than 50V.

LED: V4 (R)

SVALM (R)

SVEMG (R)

DRDY (G)

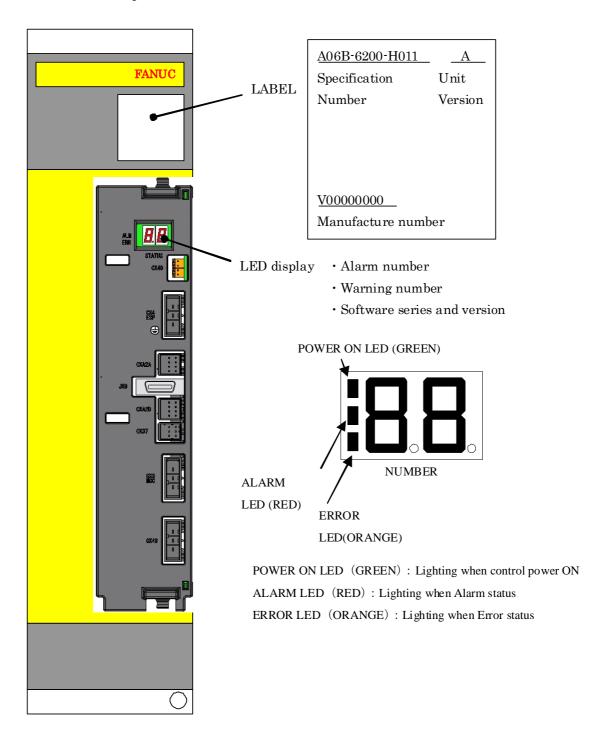
OPEN (G)

P5V (G)

P3.3V(G)

Fig.3.7.5 LEDs on the 6-Axis servo amplifier

⚠ WARNING


Before touching the 6-Axis servo amplifier, check the DC link voltage with the screws located above the LED "V4". By using a DC voltage tester, check that the voltage is 50 V or less.

LED	Color	Description	
V4	Red	Lights when the DCLINK circuit inside the servo amplifier is charged to reach the specified	
		voltage.	
		If the LED does not light after pre-charge is finished:	
		[Action 1] The DC Link may be short-circuited. Check for connection.	
		[Action 2] The charge current control resistor may be defective. Replace the	
		emergency stop unit.	
		[Action 3] Replace the servo amplifier.	
ALM	Red	Lights when the servo amplifier detects an alarm.	
		If the LED lights when there is no alarm condition in the machine:	
		[Action] Replace the servo amplifier.	
		If the LED does not light when there is an alarm condition in the machine:	
		[Action] Replace the servo amplifier.	

LED	Color	Description	
SVEMG	Red	Lights when an emergency stop signal is input to the servo amplifier.	
		If the LED lights when the machine is not at an emergency stop:	
		[Action] Replace the servo amplifier.	
		If the LED does light when the machine is at an emergency stop:	
		[Action] Replace the servo amplifier.	
DRDY	Green	Lights when the servo amplifier is ready to drive the servo motor.	
		If the LED does not light when the motor is activated:	
		[Action] Replace the servo amplifier.	
OPEN	Green	Lights when the communication between the servo amplifier and the main board is normal.	
		If the LED does not light:	
		[Action 1] Check for the connection of the FSSB optical cable.	
		[Action 2] Replace the servo card.	
		[Action 3] Replace the servo amplifier.	
P5V	Green	Lights when the power supply circuit inside the servo amplifier outputs a voltage of +5 V	
		normally.	
		If the LED does not light:	
		[Action 1] Check the robot connection cable (RMP1) to see if there is a ground fault in	
		the +5V wire.	
		[Action 2] Replace the servo amplifier.	
P3.3V	Green	Lights when the power supply circuit inside the servo amplifier outputs a voltage of +3.3 V	
		normally.	
		If the LED does not light:	
		[Action] Replace the servo amplifier.	

3.7.6 Troubleshooting by LEDs on the αiPS

The αiPS has alarm LEDs. Troubleshoot the alarm indicated by the LEDs, referring also to the alarm indication on the teach pendant.

Detail of LED Display of αiPS

ALARM LED	ERROR LED	STATUS LED	Contents
		LED is off	Control power has not been supplied. Fault of hardware.
		Number / alphabet	The software series/edition is displayed at 4 sessions for about 4 seconds after the power is turned on. First 1 sec: Upper 2 digits of the software series Second 1 sec: Lower 2 digits of the software series Third 1sec: Upper 2 digits of software version Forth 1sec: Lower 2 digits of software version Example) In case of Software serie/version 9G00/01.0 9 G → 0 0 → 0 1 → 0
		– – <u>Blink</u>	Serial communication with the servo or spindle amplifier is being established
		— — <u>Lighting</u>	Serial communication with the servo or spindle amplifier is established
		00 <u>Blink</u>	Start up main power (Precharging)
		00	Ready main power
Lighting		Number 01 to	Alarm status
		Number 01to	Warning status

LED	Description
01	PS Overcurrent
02	PS internal fan failure
03	PS overload
04	PS low volt. DC link
05	PS pre-charge failure
06	PS low volt. control
07	PS over volt. DC link
10	PS external fan failure
14	PS improper Input power
15	PS soft thermal
24	PS hardware error

3.7.7 Troubleshooting by LEDs on the sensor I/F unit for CR-35iA

MAINTENANCE

The sensor I/F unit for the I/O Link *i* only has the following LEDs to indicate the communication status of the I/O Link *i*.

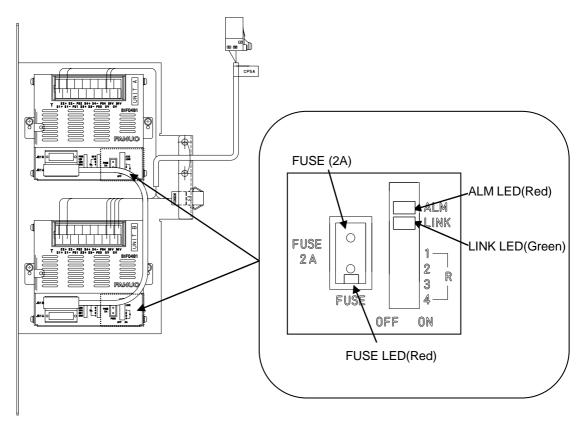


Fig.3.7.7 LEDs on the sensor I/F unit for CR-35iA

- · FUSE LED
 - Lights when the fuse blows.
 - Remove the cause of the blown fuse, and the replace the fuse.
- · LINK LED
 - The LINK LED indicates the group communication status as described below.

Operation mode	LED Indications	Meaning	Remarks
I/O Link i	OFF	Power OFF	
	ON	Power ON	
	Blink (1:1)	Communication in progress	ON = approx. 0.5 sec
	, ,	Standard	OFF = approx. 0.5 sec
	Blink (3:1)	Communication in progress	ON = approx. 1.5 sec
	(- /	(Dual check safety in use)	OFF = approx. 0.5 sec
	Blink (1:1 at high	Communication not in progress	ON = approx. 0.25 sec
	speed)	Watch-dog alarm occurrence	OFF = approx. 0.25 sec

ALM LED

The ALM LED indicates the types of I/O Link *i* alarms as described below.

Operation mode	LED Indications	Meaning	Remarks
I/O Link i	OFF	Normal state or power OFF	
	ON	Occurrence of any of a parity alarm, external input alarm, and dual check safety alarm	
	Blink (1:1)	Broken wire between the group of interest and a group subsequent to it	ON = approx. 0.5 sec OFF = approx. 0.5 sec
	Blink (3:1)	Power failure (including instantaneous power failure) in a group subsequent to the group of interest	ON = approx. 1.5 sec OFF = approx. 0.5 sec
	Blink (1:3)	Status alarm	ON = approx. 0.5 sec OFF = approx. 1.5 sec
	Blink (1:1 at high speed)	Alarm occurred due to a command from the master	ON = approx. 0.25 sec OFF = approx. 0.25 sec

3.8 MANUAL OPERATION IMPOSSIBLE

The following explains checking and corrective action required if the robot cannot be operated manually after the controller is turned on:

(1) Check and corrective action to be made if manual operation is impossible

(Check 1) Check whether the teach pendant is enabled.

(Corrective action)

Turn on the teach pendant "enable".

(Check 2) Check whether the teach pendant is handled correctly.

(Corrective action)

To move an axis by manual operation, press the axis selection key and shift key at the same time.

Set the override for manual feed to a position other than the FINE and VFINE positions.

(Check 3) Check whether the ENBL signal of the peripheral device control interface is set to on.

(Corrective action)

Place the peripheral device control interface in the ENBL status.

(Check 4) Check whether the HOLD signal of the peripheral device control interface (hold status). (Check whether the hold lamp on the teach pendant is on.)

(Corrective action)

Turn off the HOLD signal of the peripheral device control interface.

(Check 5) Check whether the previous manual operation has been completed.

(Corrective action)

If the robot cannot be placed in the effective area because of the offset of the speed command voltage preventing the previous operation from being completed, check the position deviation on the status screen, and change the setting.

(Check 6) Check whether the controller is in the alarm status.

(Corrective action)

Release the alarm.

(2) Check and corrective action to be taken if the program cannot be executed

(Check 1) Check whether the ENBL signal for the peripheral-device control interface is on.

(Corrective action)

Put the peripheral-device control interface in the ENBL state.

(Check 2) Check whether the HOLD signal for the peripheral-device control interface is on.

Also check whether the HOLD lamp on the teach pendant is on.

(Corrective action)

If the HOLD signal of the peripheral device control interface is on, turn it off.

(Check 3) Check whether the previous manual operation has been completed.

(Corrective action)

If the robot cannot be placed in the effective area because of the offset of the speed command voltage, which prevents the previous operation from being completed,

check the position deviation on the status screen, then change the setting.

(Check 4) Check whether the controller is in the alarm status.

(Corrective action) Release the alarm.

3.9 LEDS ON UNITS SUPPORTING I/O LINK i

3.9.1 Meanings of LEDs on Units Supporting I/O Link i

The standard I/O Link *i* incorporates three LEDs, "LINK" (green), "ALM" (red), and "FUSE" (red) for each unit separately. These LEDs indicate the states of the units.

The following table lists the ON/OFF states of the LEDs and their meanings.

LED ON/OFF state	ON and OFF duration
Steadily OFF	
Steadily ON	
Blink (1:1)	ON = approx. 0.5 sec, OFF = approx. 0.5 sec
Blink (3:1)	ON = approx. 1.5 sec, OFF = approx. 0.5 sec
Blink (1:3)	ON = approx. 0.5 sec, OFF = approx. 1.5 sec
Blink (1:1 at high speed)	ON = approx. 0.25 sec, OFF = approx. 0.25 sec

LED [LINK] (green)

The "LINK" (green) LED indicates the state of communication. The following table lists the meanings of LED states.

Operation mode	LED state	Meaning	Fault location and action
	OFF	Power OFF	
	ON	Power ON (before communication start)	
Common	Blink (1:1 at high speed)	Communication at halt	Communication is at halt because of an alarm. Identify the cause according to the states of the red LED stated below or information displayed on the CNC screen.
I/O Link	Blink (1:3)	Communication in progress	
	Blink (1:1)	Communication in progress	
I/O Link i	Blink (3:1)	Communication in progress (Dual check safety in use)	

LED 「ALM」 (red)

The "ALM" (red) LED indicates an alarm in the unit of interest or a unit subsequent to it. The following table lists the meanings of LED states.

Operation mode	LED state	Meaning	Fault location and action
Common	OFF	Normal state or power OFF	
I/O Link	ON	Alarm	It is likely that the hardware may be defective. Replace the unit.
	ON	Alarm	It is likely that the hardware may be defective. Replace the unit.
I/O Link i	Broken wire between the unit of interest and a unit subsequent to it		Check for a defective cable or a poor cable connection between JD1A on the unit of interest and JD1B on a unit subsequent to that unit. Alternatively, it is likely that there may be noise. Check to see if there is noise around the cable.
	Blink (3:1)	Power failure (including instantaneous power failure) in a unit subsequent to the unit of interest	Identify and remove the cause of a power failure in a unit subsequent to the unit of interest.
	Blink (1:3)	Status alarm	A status alarm, such as a DO ground fault, has occurred. Identify and remove the cause of the alarm.

4 PRINTED CIRCUIT BOARDS

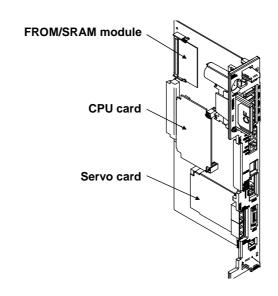
The printed circuit boards are factory-set for operation. Usually, you do not need to set or adjust them. This chapter describes the standard settings and adjustment required if a defective printed circuit board is replaced. It also describes the test pins and the LED indications.

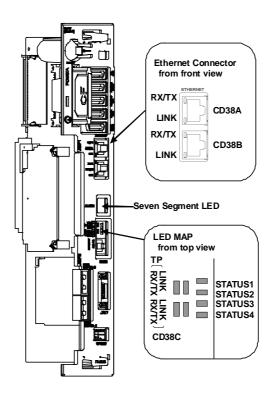
The controller printed circuit board includes the main unit printed circuit board and one or more cards or modules installed horizontally to the main-unit printed-circuit board.

These PC boards have interface connectors, LED indicators, and a plastic panel at the front. At the rear, there is a backplane connector.

4.1 MAIN BOARD

Card and Modules




Fig.4.1 Main board

Name	Ordering Specification	Board Specification	Note
Main board	A05B-2600-H001	A16B-3200-0730	Standard
		A16B-3200-0780	
	A05B-2600-H002	A16B-3200-0731	Option (Force sensor)
		A16B-3200-0781	
	A05B-2600-H003	A16B-3200-0732	Option (Force sensor)
		A16B-3200-0782	(High speed com. CPU)
CPU card	A05B-2600-H020	A20B-3300-0686	Standard / SDRAM 32Mbyte
		A17B-3301-0106	
	A05B-2600-H021	A20B-3300-0687	Standard / SDRAM 64Mbyte
		A17B-3301-0107	
	A05B-2600-H022	A20B-3300-0688	Standard / SDRAM 128Mbyte
		A17B-3301-0108	
	A05B-2600-H023	A20B-3300-0683	High speed / SDRAM 32Mbyte
	A03B-2000-H023	A17B-3301-0103	
	A05B-2600-H024	A20B-3300-0684	High speed / SDRAM 64Mbyte
	A03B-2000-H024	A17B-3301-0104	
	A05B-2600-H025	A20B-3300-0685	High speed / SDRAM 128Mbyte
	A00D-2000-H020	A17B-3301-0105	

Name	Ordering Specification	Board Specification	Note
Axis control card	A05B-2600-H040	A20B-3300-0664	6-axis
		A20B-3300-0774	
	A05B-2600-H041	A20B-3300-0663	12-axis
		A20B-3300-0773	
	A05B-2600-H042	A20B-3300-0662	18-axis
		A20B-3300-0772	
	A05B-2600-H043	A20B-3300-0661	24-axis
		A20B-3300-0771	
	A05B-2600-H044	A20B-3300-0660	36-axis
		A20B-3300-0770	

Name	Ordering Specification	Board Specification	Note
FROM/SRAM module	A05B-2600-H060	A20B-3900-0283	FROM 32M/ SRAM 1M
		A20B-3900-0297	
	A05B-2600-H061	A20B-3900-0284	FROM 32M/ SRAM 2M
		A20B-3900-0298	
	A05B-2600-H062	A20B-3900-0285	FROM 32M/ SRAM 3M
		A20B-3900-0299	
	A05B-2600-H063	A20B-3900-0286	FROM 64M/ SRAM 1M
	A05B-2600-H064	A20B-3900-0287	FROM 64M/ SRAM 2M
	A05B-2600-H065	A20B-3900-0288	FROM 64M/ SRAM 3M
	A05B-2600-H066	A20B-3900-0280	FROM 128M/ SRAM 1M
	A05B-2600-H067	A20B-3900-0281	FROM 128M/ SRAM 2M
	A05B-2600-H068	A20B-3900-0282	FROM 128M/ SRAM 3M

LEDs

Seven segment LED	Description
B .	When the alarm condition has occurred in the main board, this LED is turned on. Please see the Section 3.7.TROUBLESHOOTING BASED ON LED INDICATIONS.

ETHERNET CONNECTOR LED	Color	Description	
RX/TX Green		Blink during data transmission	
LINK Green		Light when a link is established	

MAINTENANCE

STATUS LED	Color	Description
STATUS1	Green	Those I CDs show the energing status of the evictors
STATUS2	Green	These LEDs show the operating status of the system. Please see the Section 3.7.TROUBLESHOOTING BASED
STATUS3	Green	ON LED INDICATIONS.
STATUS4	Green	ON LED INDICATIONS.

ETHERNET LED	Color	Description	
TP_RX/TX	Green	Blink during data transmission of Ethernet TP	
TP_LINK	Green	Light when a link of Ethernet TP is established	
CD38C_RX/TX	Green	Blink during data transmission of CD38C	
CD38C_LINK	Green	Light when a link of CD38C is established	

4.2 **EMERGENCY STOP BOARD** A-cabinet: A20B-2200-0650/B-cabinet: A20B-2102-0050

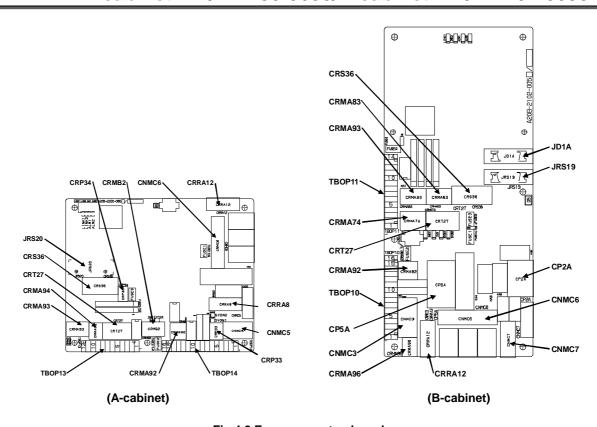


Fig.4.2 Emergency stop board

4.3 BACKPLANE

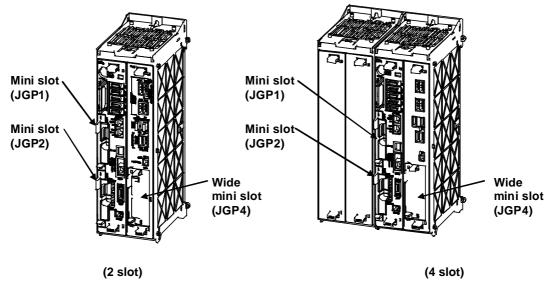


Fig.4.3 Backplane

Name	Ordering Specification	Parts number	Board specification
2 slot backplane	A05B-2600-H080	A05B-2600-C001	A20B-2004-0980
4 slot backplane	A05B-2600-H081	A05B-2600-C002	A20B-2004-0990

4.4 PROCESS I/O BOARD JA (A16B-2204-0010)

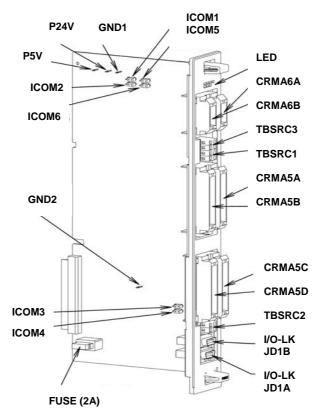


Fig.4.4 Process I/O Board JA

(1) Test pins

Name		Use
P24V	+24V	For measuring the DC supply voltage
P5V	+5V	
GND1	GND	
GND2	GND	

(2) Settings

	Name	Standard setting	Description
ICOM1	UDI1 to 20	Side A	Set the common voltage
	(Connector CRMA5A)		Side A: +24 V common
ICOM2	UDI21 to 40		Side B: 0 V common
	(Connector CRMA5B)		
ICOM3	UDI41 to 60		
	(Connector CRMA5C)		
ICOM4	UDI61 to 80		
	(Connector CRMA5D)		
ICOM5	UDI81 to 88		
	(Connector CRMA6A)		
ICOM6	UDI89 to 96		
	(Connector CRMA6B)		

(3) Meaning of LEDs

	Color	Description
PROCESS PCB STATUS 1 2 3 4 ALARM ALARM	Red	A communication alarm occurred between the main board and process I/O board.
PROCESS	Red	A fuse (FUSE 1) in the process I/O board blew.

4.5 PROCESS I/O BOARD JB (A16B-2204-0011)

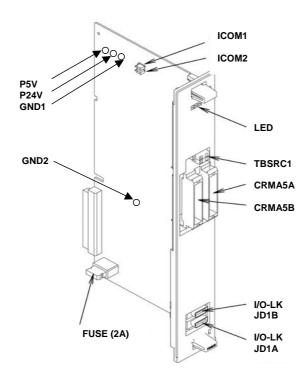


Fig.4.5 Process I/O Board JB

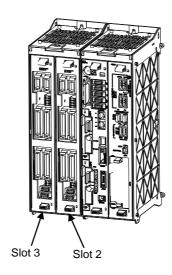
(1) Test pins

Name		Use
P24V	+24V	For measuring the DC supply voltage
P5V	+5V	
GND1	GND	
GND2	GND	

(2) Settings

Name		Standard setting	Description
ICOM1	UDI1 to 20	Side A	Set the common voltage
	(Connector CRMA5A)		Side A: +24 V common
ICOM2	UDI21 to 40		Side B: 0 V common
	(Connector CRMA5B)		

(3) LEDs


	Color	Description
PROCESS	Red	A communication alarm occurred between the main board and process I/O board.
PROCESS	Red	A fuse (FUSE 1) in the process I/O board blew.

NOTE

Installation of Process I/O board JA, JB

1st Process I/O board is installed to slot 3, and 2nd Process I/O board is installed to slot 2.

If both Process I/O board JA and JB are installed, Process I/O board JA is installed to slot 2, and Process I/O board JB is installed to slot 3.

4.6 PROCESS I/O BOARD MA (A20B-2004-0380)

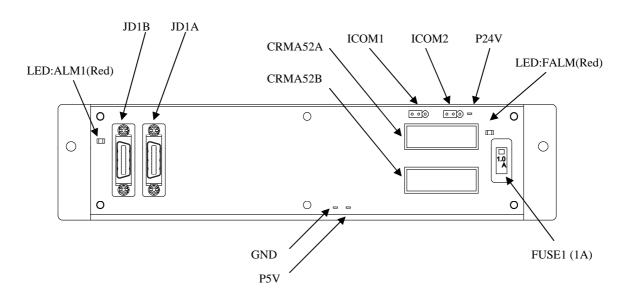


Fig.4.6 Process I/O board MA

(1) Test pins

(-) F		
Nar	ne	Use
P24V	+24V	
P5V	+5V	For measuring the DC supply voltage
GND	GND	

(2) Settings

Name		Standard setting	Description
ICOM1	UDI1- 10 (Connector CRMA52A)	Side A	For common voltage setting Side A: +24V common
ICOM2	UDI11- 20 (Connector CRMA52B)		Side B: 0V common

(3) LEDs

Name	Color	Description
ALM1	Red	A communication alarm occurred between the main board and process I/O board.
FALM	Red	The fuse (FUSE1) on the process I/O board has blown.

4.7 PROCESS I/O BOARD MB (A20B-2101-0730)

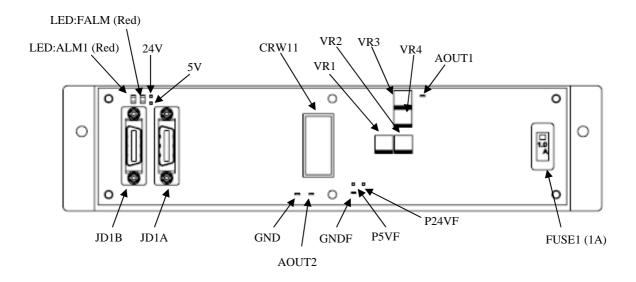


Fig.4.7 Process I/O board MB

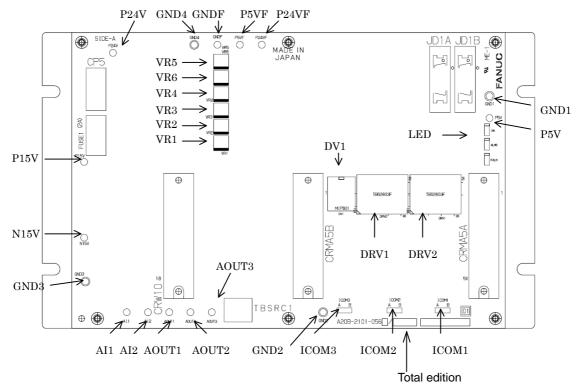
(1) Test pins and pads

N	ame	Use
24V	+24V	
5V	+5V	For measuring the DC supply voltage
GND	GND	
P24VF	+24V	
P5VF	+5V	D/A converter power supply
GNDF	GND	
AOUT1	Channel 1	For analog output signal (D/A) voltage measurement
AOUT2	Channel 2	

(2) Adjustment

VR1/VR2 Channel 1 gain and offset adjustment

Connect the "+" and "-" terminals of a digital voltmeter, respectively, to the AOUT1 check pin and the GNDF check pin (not a general ground point). From the teach pendant, execute AOUT[1]=3413, using a robot program. While observing the voltage at the AOUT1 check pin with the digital voltmeter, adjust potentiometers VR1 and VR2 for 15.0V.


VR3/VR4 Channel 2 gain and offset adjustment

Connect the "+" and "-" terminals of a digital voltmeter, respectively, to the AOUT2 check pin and the GNDF check pin (not a general ground point). From the teach pendant, execute AOUT[2]=3413, using a robot program. While observing the voltage at the AOUT2 check pin with the digital voltmeter, adjust potentiometers VR3 and VR4 for 15.0V.

(3) LEDs

Name	Color	Description
ALM1	Red	A communication alarm occurred between the main CPU and process I/O board.
FALM	Red	The fuse (FUSE1) on the process I/O board has blown.

4.8 PROCESS I/O BOARD KA (A20B-2101-0560)

A20B-2101-0560

(1) Meanings of check pins

Na	me	Use	
P24V	+24V		
P5V	+5V		
P15V	+15V		
N15V	-15V	For DC naver magazroment	
GND1	GND	For DC power measurement	
GND2	GND		
GND3	GND		
GND4	GND		
P5VF	+5V		
P24VF	+24V	D/A converter power supply	
GNDF	GND		
Al1	Channel 1	For analog input signal (A/D) valtage massurement	
Al2	Channel 2	For analog input signal (A/D) voltage measurement	
AOUT1	Channel 1		
AOUT2	Channel 2	For analog output signal (D/A) voltage measurement	
AOUT3	Channel 3		

(2) Setting

	Name	Standard setting	Use
ICOM1	UDI1 to 20 (Connector CRMA5A)	Side A	For common voltage setting Side A: +24 V common
ICOM2	UDI21 to 40 (Connector CRMA5B)		Side B: 0 V common
ICOM3	WI01 to 08 (Connector CRW10)		

(3) Adjustment

VR1/VR2: Channel 1 gain and offset adjustment

Connect the "+" and "-" terminals of a digital voltmeter, respectively, to the AOUT1 check pin and the GNDF check pin (not a general ground point). From the teach pendant, execute AOUT [1]=3413, using a robot program. While observing the voltage at the AOUT1 check pin with the digital voltmeter, adjust potentiometers VR1 and VR2 for 15.0 V.

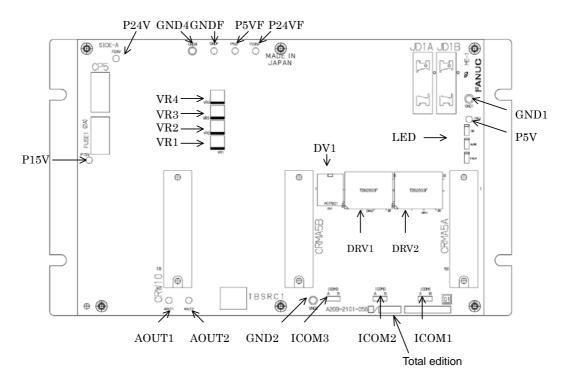
VR3/VR4: Channel 2 gain and offset adjustment

Connect the "+" and "-" terminals of a digital voltmeter, respectively, to the AOUT2 check pin and the GNDF check pin (not a general ground point). From the teach pendant, execute AOUT [2]=3413, using a robot program. While observing the voltage at the AOUT2 check pin with the digital voltmeter, adjust potentiometers VR3 and VR4 for 15.0 V.

VR5/VR6: Channel 3 gain and offset adjustment

Connect the "+" and "-" terminals of a digital voltmeter, respectively, to the AOUT3 check pin and the GNDF check pin (not a general ground point). From the teach pendant, execute AOUT [3]=3413, using a robot program. While observing the voltage at the AOUT3 check pin with the digital voltmeter, adjust potentiometers VR5 and VR6 for 15.0 V.

(4) Meaning of LEDs


	Color	Meaning
ALMO FALM	Red	A communication alarm occurred between the main CPU and the process I/O board.
ALMO FALM	Red	The fuse (FUSE1) on the process I/O board has blown.

(5) Correspondence between driver ICs and DO signals

Driver IC specification: DRV1, DRV2: A76L-1151-0167
DV1: A76L-1151-0070

Driver IC name	DO signal name
DRV1	CMDENBL, SYSRDY, PROGRUN, PAUSED
	HELD, FAULT, ATPERCH, TPENBL
	BATALM, BUSY, ACK1/SNO1, ACK2/SNO2
	ACK3/SNO3, ACK4/SNO4, ACK5/SNO5, ACK6/SNO6
DRV2	ACK7/SNO7, ACK8/SNO8, SNACK, RESERVED
	DO01, DO02, DO03, DO04
	DO05, DO06, DO07, DO08
	DO09, DO10, DO11, DO12
DV1	DO13, DO14, DO15, DO16
	DO17, DO18, DO19, DO20

4.9 PROCESS I/O BOARD KB (A20B-2101-0561)

A20B-2101-0561

(1) Meanings of check pins

(1) Wicalings of (meek pins	
Na	me	Use
P24V	+24V	
P5V	+5V	
GND1	GND	For DC naver magazroment
GND2	GND	For DC power measurement
GND3	GND	
GND4	GND	
P5VF	+5V	
P24VF	+24V	D/A converter power supply
GNDF	GND	
AOUT1	Channel 1	For analog output signal (D/A) voltage
AOUT2	Channel 2	measurement
	1	

(2) Setting

Name		Standard setting	Use
ICOM1	UDI1 to 20 (Connector CRMA5A)	Side A	For common voltage setting Side A: +24 V common
ICOM2	UDI21 to 40		Side B: 0 V common
ICOM3	(Connector CRMA5B) WI01 to 08 (Connector CRW10)		

(3) Adjustment

VR1/VR2: Channel 1 gain and offset adjustment

Connect the "+" and "-" terminals of a digital voltmeter, respectively, to the AOUT1 check pin and the GNDF check pin (not a general ground point). From the teach pendant, execute AOUT [1]=3413, using a robot program. While observing the voltage at the AOUT1 check pin with the digital voltmeter, adjust potentiometers VR1 and VR2 for 15.0 V.

VR3/VR4: Channel 2 gain and offset adjustment

Connect the "+" and "-" terminals of a digital voltmeter, respectively, to the AOUT2 check pin and the GNDF check pin (not a general ground point). From the teach pendant, execute AOUT [2]=3413, using a robot program. While observing the voltage at the AOUT2 check pin with the digital voltmeter, adjust potentiometers VR3 and VR4 for 15.0 V.

(4) Meaning of LEDs

	Color	Meaning
ALMO FALM	Red	A communication alarm occurred between the main CPU and the process I/O board.
ALMO FALM	Red	The fuse (FUSE1) on the process I/O board has blown.

(5) Correspondence between driver ICs and DO signals

Driver IC specification: DRV1, DRV2: A76L-1151-0167
DV1: A76L-1151-0070

 Driver IC name
 DO signal name

 DRV1
 CMDENBL, SYSRDY, PROGRUN, PAUSED HELD, FAULT, ATPERCH, TPENBL BATALM, BUSY, ACK1/SNO1, ACK2/SNO2 ACK3/SNO3, ACK4/SNO4, ACK5/SNO5, ACK6/SNO6

 DRV2
 ACK7/SNO7, ACK8/SNO8, SNACK, RESERVED DO01, DO02, DO03, DO04 DO05, DO06, DO07, DO08 DO09, DO10, DO11, DO12

 DV1
 DO13, DO14, DO15, DO16 DO17, DO18, DO19, DO20

6-AXIS SERVO AMPLIFIERS

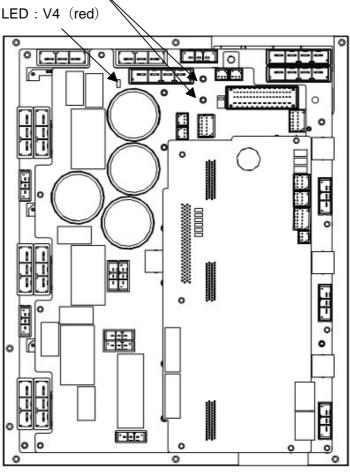
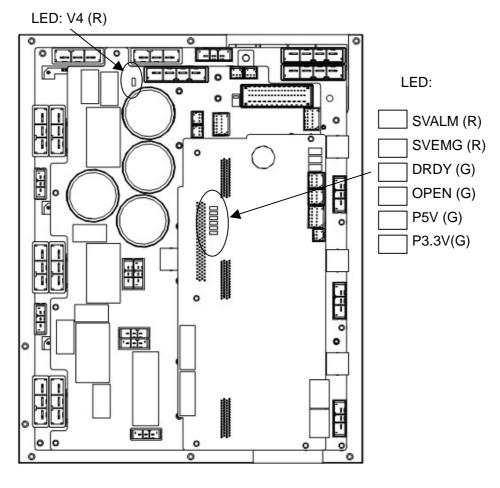

The servo amplifiers are factory-set for operation. Usually, you do not need to set or adjust them. This chapter describes the standard settings and adjustment required if a defective servo amplifier is replaced. It also describes the use of test pins and meanings of the LED indications.

Table 5(a) Servo amplifier specification (Resistor discharge)				
ROBOT	SERVO AMPLIFIER	DISCHARGI	CHARGE REGISTOR	
ROBOT	SERVO AMPLIFIER	A-CABINET	B-CABINET	
M-900 <i>i</i> A/400L,600	A06B-6400-H101(AMP1)		A05B-2603-C100	
M-900iB/700,360,400L,280L	A06B-6240-H209(AMP2)			
	A06B-6240-H105(AMP3)			
R-2000 <i>i</i> B/200T,220U,220US	A06B-6400-H101	A05B-2601-C102	A05B-2603-C100	
M-900 <i>i</i> A/260L,350				
M-410 <i>i</i> B, M-410 <i>i</i> C				
M-900 <i>i</i> A/150P	A06B-6400-H101		A05B-2603-C100	
R-2000iB/100P	A06B-6400-H102		A05B-2603-C100	
R-1000iA(Except /80H)	A06B-6400-H102	A05B-2601-C100	A05B-2603-C100	
R-2000iB (Except /200T,220U,220US,100P)				
M-710iC(Except /50H)				
M-20 <i>i</i> A				
ARC Mate 120iC				
CR-35iA				
R-2000 <i>i</i> C	A06B-6400-H002	A05B-2601-C100	A05B-2603-C100	
M-420 <i>i</i> A, M-421 <i>i</i> A	A06B-6400-H102	A05B-2601-C102	A05B-2603-C100	
M-710 <i>i</i> C/50H, R-1000 <i>i</i> A/80H				
M-2 <i>i</i> A	A06B-6400-H002	A05B-2601-C100		
M-3 <i>i</i> A	A06B-6400-H102	A05B-2601-C100		
ARC Mate 100iC	A06B-6400-H003	A05B-2601-C100	A05B-2603-C100	
M-10 <i>i</i> A				
F-200 <i>i</i> B				
M-430 <i>i</i> A/4FH	A06B-6400- H004(AMP1)	A05B-2601-C100	A05B-2603-C100	
	A06B-6240-H201(AMP2)			
M-430 <i>i</i> A/2P,2PH	A06B-6400- H004(AMP1)	A05B-2601-C100	A05B-2603-C100	
	A06B-6240-H301(AMP2)			
M-900 <i>i</i> A/200P	A06B-6400-H101(Main,AMP1)		A05B-2603-C100	
	A06B-6400-H101(2nd,AMP1)			
M-2000 <i>i</i> A	A06B-6400-H101(Main,AMP1)		A05B-2603-C100	
	A06B-6240-H106(Main,AMP2)			
	A06B-6400-H101(2nd,AMP1)			
	A06B-6240-H106(2nd,AMP2)			

Table 5(b) Servo amplifier specification (Power supply regeneration)

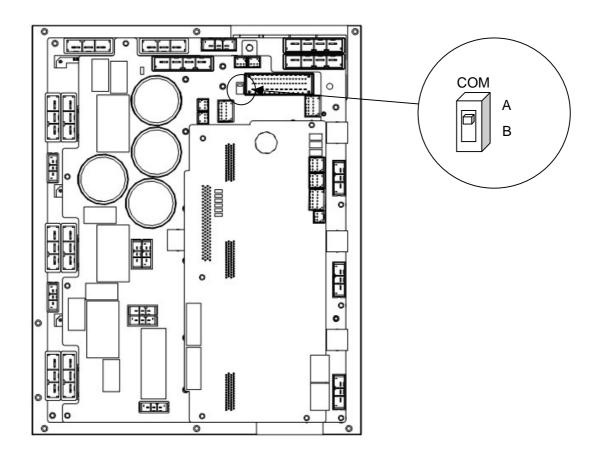
·	CERVO AMPLIFIED	POWER		REGENERATIVE REGISTOR	
ROBOT	SERVO AMPLIFIER	SUPPLY	A-CABINET	B-CABINET	
M-900 <i>i</i> A/400L,600 M-900 <i>i</i> B/700,360,400L	A06B-6400-H101(AMP1) A06B-6240-H209(AMP2) A06B-6240-H105(AMP3)	A06B-6200-H037		A05B-2603-C101	
R-2000 <i>i</i> B/200T,220U,220US M-900 <i>i</i> A/260L,350,150P M-410 <i>i</i> B, M-410 <i>i</i> C	A06B-6400-H101	A06B-6200-H015	A05B-2601-C101	A05B-2603-C101	
R-1000 <i>i</i> A R-2000 <i>i</i> B (Except /200T,220U,220US) M-710 <i>i</i> C M-420 <i>i</i> A, M-421 <i>i</i> A	A06B-6400-H102	A06B-6200-H015	A05B-2601-C101	A05B-2603-C101	
R-2000 <i>i</i> C	A06B-6400-H002	A06B-6200-H015	A05B-2601-C101	A05B-2603-C101	
M-2 <i>i</i> A	A06B-6400-H002	A06B-6200-H015	A05B-2601-C101		
M-3 <i>i</i> A	A06B-6400-H102	A06B-6200-H015	A05B-2601-C101		
M-900 <i>i</i> A/200P	A06B-6400-H101(Main,AMP1) A06B-6400-H101(2nd,AMP1)	A06B-6200-H015		A05B-2603-C101	
M-2000 <i>i</i> A	A06B-6400-H101(Main,AMP1) A06B-6240-H106(Main,AMP2) A06B-6400-H101(2nd,AMP1) A06B-6240-H106(2nd,AMP2)	A06B-6200-H015	A05B-2601-C101	A05B-2603-C101	


Check that the voltage is not higher than 50V. LED: V4 (red)

⚠ WARNING

Before touching the servo amplifier, for example, for maintenance purposes, check the voltage at the screw above the LED "V4" with a DC voltage tester to see if the remaining voltage is not higher than 50V.

5.1 LEDS OF SERVO AMPLIFIER



LED	Color	Description
V4	Red	Lights when the DCLINK circuit inside the servo amplifier is charged to reach a specific voltage.
SVALM	Red	Lights when the servo amplifier detects an alarm.
SVEMG	Red	Lights when an emergency stop signal is input to the servo amplifier.
DRDY	Green	Lights when the servo amplifier is ready to drive the servo motor.
OPEN	Green	Lights when the communication between the servo amplifier and the main board is normal.
P5V	Green	Lights when the power supply circuit inside the servo amplifier outputs a voltage of +5 V normally.
P3.3V	Green	Lights when the power supply circuit inside the servo amplifier outputs a voltage of +3.3 V normally.

5.2 SETTING OF 6-AXIS SERVO AMPLIFIER

Table 5.2 Settings

Name	Standard setting	Description
COM1	Side A	Robot Digital Input (RI) device common voltage.
		Side A: +24V common
		Side B: 0V common

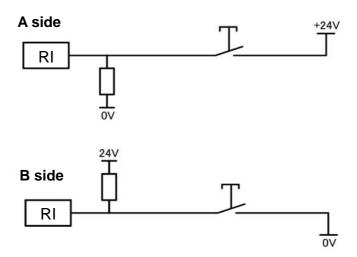


Fig.5.2 Circuit based on jumper pin location or setting of switch

5.3 6-AXIS SERVO AMPLIFIER SPECIFICATIONS

SPECIFICATIONS TABLE: (A06B-6400-H***)

UNIT		A06B-6400-H101	A06B-6400-H102	A06B-6400-H002
INPUT	VOLTAGE	AC200 to A0	C240V (+10% / -15%), 50/6	0Hz, 3phase
RATINGS	POWER CAPACITY	5.6KVA	5.1KVA	5.1KVA
OUTPUT	MAXIMUM OUTPUT		240V to	
RATINGS	CURRENT : J1	160Ap / 36.5Arms	80Ap / 23.0Arms	80Ap / 23.0Arms
	CURRENT : J2	160Ap / 36.5Arms	80Ap / 23.0Arms	80Ap / 23.0Arms
	CURRENT : J3	160Ap / 36.5Arms	80Ap / 23.0Arms	80Ap / 23.0Arms
	CURRENT : J4	40Ap / 13.4Arms	40Ap / 13.4Arms	40Ap / 13.4Arms
	CURRENT : J5	40Ap / 13.4Arms	40Ap / 13.4Arms	40Ap / 13.4Arms
	CURRENT : J6	40Ap / 13.4Arms	40Ap / 13.4Arms	40Ap / 13.4Arms
	TOTAL CURRENT	125Arms	90Arms	90Arms

UNIT		A06B-6400-H003	A06B-6400-H004
INPUT	VOLTAGE	AC200 to AC240V (+10%	/ -15%), 50/60Hz, 3phase
RATINGS	POWER CAPACITY	2.7KVA	2.0KVA
OUTPUT	MAXIMUM OUTPUT	240	V to
RATINGS	CURRENT : J1	40Ap / 13.4Arms	20Ap / 6.5Arms
	CURRENT : J2	40Ap / 13.4Arms	20Ap / 6.5Arms
	CURRENT : J3	20Ap / 6.5Arms	20Ap / 6.5Arms
	CURRENT : J4	20Ap / 6.5Arms	20Ap / 6.5Arms
	CURRENT : J5	20Ap / 6.5Arms	20Ap / 6.5Arms
	CURRENT : J6	20Ap / 6.5Arms	20Ap / 6.5Arms
	TOTAL CURRENT	52.8Arms	39Arms

UNIT		A06B-6400-H005
INPUT	VOLTAGE	AC200 to AC240V (+10% / -15%), 50/60Hz,3/1phase
RATINGS	POWER CAPACITY	1.3/1.4 (3/1phase)
OUTPUT	MAXIMUM OUTPUT	240V to
RATINGS	CURRENT : J1	20Ap / 3.6Arms
	CURRENT : J2	20Ap / 3.6Arms
	CURRENT : J3	20Ap / 3.6Arms
	CURRENT : J4 CURRENT : J5	20Ap / 3.6Arms
		10Ap / 2.0Arms
	CURRENT : J6	10Ap / 2.0Arms
	TOTAL CURRENT	18.4Arms

6 POWER SUPPLY

Setting and adjustment of the power supply is factory-set for operation. Usually, you do not need to set or adjust it.

6.1 BLOCK DIAGRAM OF THE POWER SUPPLY

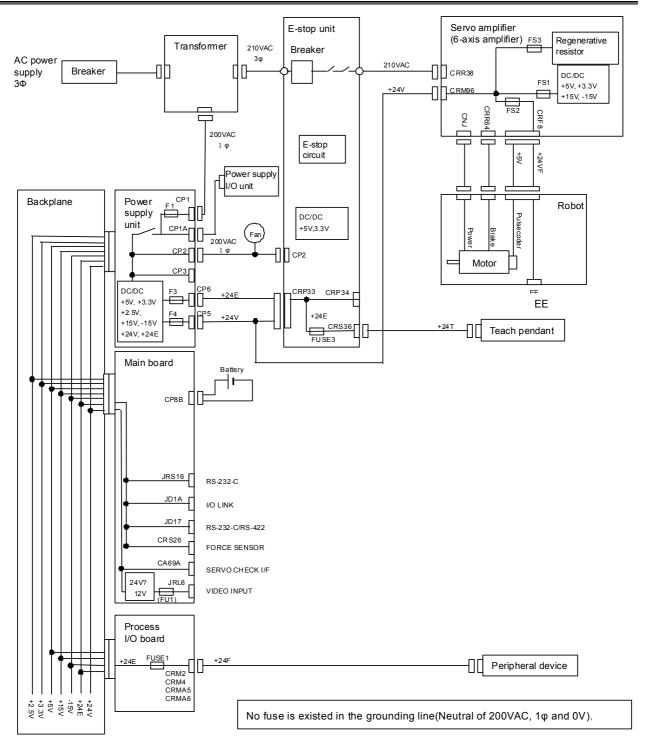


Fig.6.1 Block diagram of the power supply

6.2 TRANSFORMER

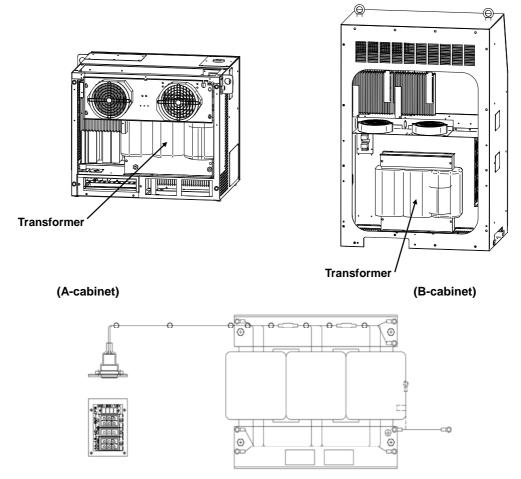
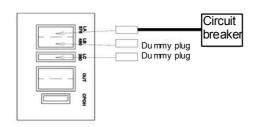
Select a transformer and tap according to the supply voltage. Select a transformer tap among the rated voltage.

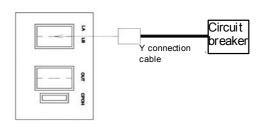
A-c		:	-4
Δ-6	٦an	M n	ΩТ

	Rated	Transformer specification			
	voltage	13.0KVA	10.5KVA	7.5KVA	3KVA
	500 to 575				
TYPE E	440 to 500		A80L-0028-0024#A	A80L-0026-0040#A	A80L-0024-0028
	380 to 415				
TYPE D	200 to 230		A80L-0028-0027#A	A80L-0026-0041#A	A80L-0024-0029
	380 to 400				

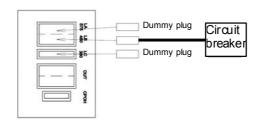
B-cabinet

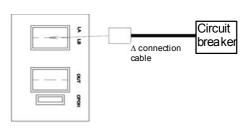
	Rated	Transformer specification			
	voltage	13.0KVA	10.5KVA	7.5KVA	3KVA
	500 to 575				
TYPE E	440 to 500	A80L-0028-0025	A80L-0028-0024	A80L-0026-0040	A80L-0024-0028
	380 to 415				
TYPE D	200 to 230	A 0.01 0.000 0.000	A80L-0028-0027	A80L-0026-0041	A80L-0024-0029
	380 to 400	A80L-0028-0028			

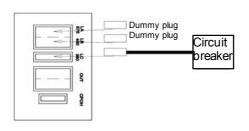




Fig.6.2 (a) Transformer mounting locations and structure

Cabinet side connector


1. TYPE E (500V-575V)


4. TYPE D (380V-400V)


2. TYPE E (440V-500V)

5. TYPE D (200V-230V)

3. TYPE E (380V-415V)

(A-cabinet)

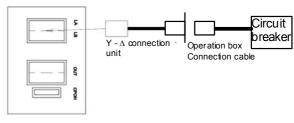


Fig.6.2(b) Setting the input voltage

1	Type E: 500-575V	Insert the connector connected to the circuit breaker into connector LA and the dummy plug into connectors LB and LC.
2	Type E: 440-500V	Insert the connector connected to the circuit breaker into connector LB and the dummy plug into connectors LA and LC.
3	Type E: 380-415V	Insert the connector connected to the circuit breaker into connector LC and the dummy plug into connectors LA and LB.
4	Type D: 380-400V	Insert the Y connection cable connected to the circuit breaker into connectors LA and LB.
5	Type D: 200-230V	In case of B-cabinet Insert the Δ connection cable connected to the circuit breaker into connectors LA and LB.
		In case of A-cabinet Insert the Y- Δ connection unit into connectors LA and LB, and insert the operation box connection cable into the Y- Δ connection unit.

! CAUTION

The secondary voltage of the transformer depends on the cable connection between a breaker and a transformer. Be careful for the cable connection in the maintenance.

6.3 CHECKING THE POWER SUPPLY UNIT (A16B-2203-0910)

The power supply unit need not be set or adjusted.

Table 6.3 Rating of the Power supply unit

Output	Rated voltage	Tolerance
+5V	+5.1V	±3%
+3.3V	+3.3V	±3%
+2.5V	+2.5V	±3%
+24V	+24V	±5%
+24E	+24V	±5%
+15V	+15V	±10%
-15V	-15V	±10%

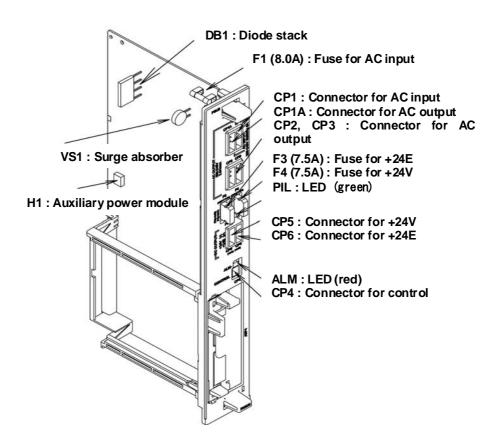


Fig.6.3 Interface of the power supply unit

7

SENSOR I/F UNIT FOR CR-35iA

Specification of sensor I/F unit: A05B-2600-C320

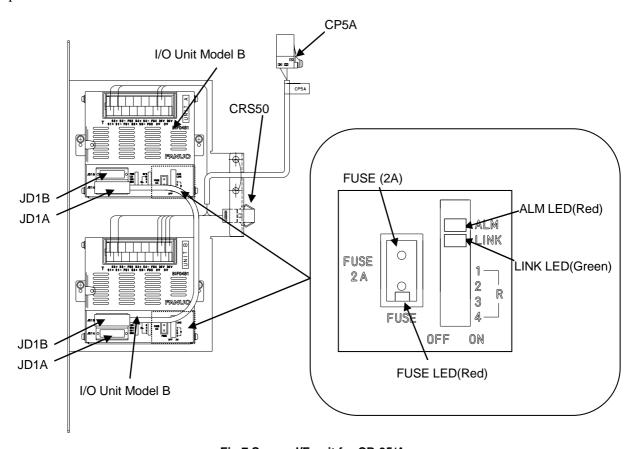


Fig.7 Sensor I/F unit for CR-35iA

8 REPLACING UNITS

This section explains how to replace each unit in the control section.

⚠ WARNING

Before you start to replace a unit, turn off the controller main power. Also keep all machines in the area of the controller switched. Otherwise, you could injure personnel or damage equipment.

↑ WARNING

Before replacing components, read the maintenance manual to understand the replacement procedure. Performing an incorrect replacement procedure can lead to an unpredictable accident, resulting in breakage in the robot or personal injury.

⚠ WARNING

When a heavy component or unit is to be handled, support the workers with a crane or the like not to apply excessive loads to the workers. Note that incorrect handling can cause serious injury to the workers.

⚠ CAUTION

Components in the controller heat up, so care should be taken. When you have to touch a heated component, prepare a protector such as heat-resistant gloves.

Before the replacement, please refer to "SAFETY PRECAUTION" chapter of this manual.

8.1 REPLACING THE PRINTED-CIRCUIT BOARDS

⚠ CAUTION

When you replace printed-circuit boards, observe the following cautions:

- 1 Keep the controller power switched off.
- 2 When you remove a printed-circuit board, do not touch the semiconductor devices on the board with your hand or make them touch other components.
- 3 Make sure that the replacement printed-circuit board has been set up appropriately. (Setting plug etc.)
- 4 After replacing a printed-circuit board, make adjustments correctly if the board needs to be adjusted.
- 5 If the backplane board, power supply unit, or main board (including cards and modules) is replaced, it is likely that robot parameters and taught data are lost. Before you start to replace these components, save a backup copy of the robot parameters and taught data to an external memory device.
- 6 Before you disconnect a cable, note its location. If a cable is detached for replacement, reconnect it exactly as before.

8.1.1 Replacing the Backplane Board (Unit)

When replacing the backplane board, do so together with the plastic rack.

(1) Detach the cables from the power unit and boards on the backplane board.

⚠ CAUTION

When you remove the main board, be sure that the battery is good (3.1-3.3VDC) and it is installed correctly. USE STATIC PROTECTION.

- (2) Remove the power supply unit and boards from the backplane (rack).
- (3) Detach the grounding cable from the backplane unit.
- (4) Loosen the retaining screws in the upper section of the rack. Remove the retaining screws from the lower section of the rack.
- (5) Side rack up and out.
- (6) To replace the backplane and rack, reverse steps (1) (5).

↑ CAUTION

There is a possibility of data loss when a backplane- mounted printed circuit board is replaced. Be sure to back up all program and setup data on an external device such as a memory card before proceeding.

8.1.2 Replacing the Power Unit and Printed-Circuit Boards on the **Backplane**

The backplane incorporates the power unit, main board, and option boards. There are two types of option boards: Full-size board and mini-size board. A full-size board occupies one slot. A mini-size board uses part of a full-size board.

⚠ CAUTION

Before starting replacement, turn off the controller main power. The main board is equipped with battery-backed memory devices for holding robot parameters and taught data, for example. When the main board is replaced, the data in the memory devices is lost.

- (1) Detach the cable from the power supply unit or the printed-circuit board, whichever is to be replaced.
- (2) Pinch the barbed handles on the upper and lower sections of the board to unlatch it, then pull it toward you.
- (3) Place the replacement board on the rail in the appropriate slot of the rack, then push it in gently by the handles until it is latched.
- (4) There are two rails in the main board SLOT (slot 1). When inserting the main board, align it to the right-side rail.
- (5) There are two rails in slots 3 (slots for a full-size option board). When you insert a full-size option board, align it to the left-side rail.

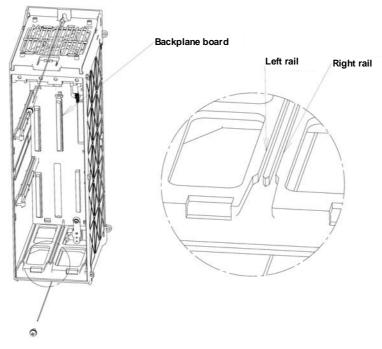


Fig.8.1.2 (a) Replacing the backplane board

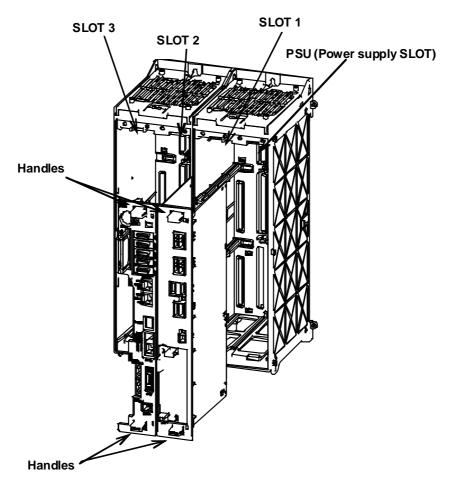


Fig.8.1.2 (b) Replacing the power unit and printed-circuit boards on the backplane

8.2 REPLACING CARDS AND MODULES ON THE MAIN **BOARD**

⚠ CAUTION

Before you start to replace a card or module, make a backup copy of robot parameters and programs. If the FROM/SRAM module is replaced, SRAM memory contents are lost.

Demounting a Card

- 1. Pull up the spacer metal fitting. (Fig. 8.2 (a))
- 2. Insert a finger into the rear of the card and pull up the card slowly in the arrow direction. (Fig. 8.2 (b) (Note: At this time, hold the neighborhood of the main board on the opposite side with the other hand whenever possible. A force of 7 to 8 kgf is required for extraction.)
- When one side of the card board is raised slightly by pulling up, do not fully extract the card board, but push back the card softly.
- 4. When the card board is pushed back to be parallel with the main board, pinch two sides of the card board and pull up the card board. This completes the extraction of the card board.

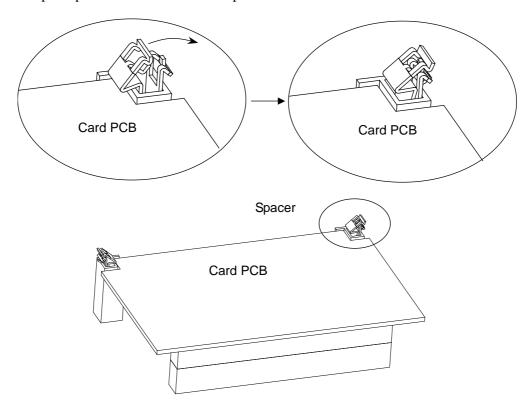


Fig.8.2 (a) Demounting a card

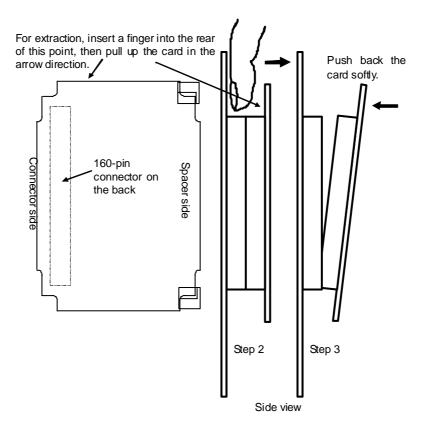


Fig.8.2 (b) Demounting a card

Mounting a Card

- 1. Check that the metal fittings of the spacers are raised. (Fig.8.2 (c))
- 2. To align the board insertion position, touch the spacer end faces of the board with the spacer. (Fig. 8.2 (d)) (At this time, the board is touching the spacers only.)
- 3. While aligning the board with the spacers, lower the connector side slowly until the connectors touch each other. (Fig. 8.2 (d)) (do not press until aligned.)
- 4. The mating position can be determined more easily by moving the card back and forth until the alignment "nubs" and "holes" are aligned on the connectors. The board must be turned to view the board connectors on the side. (Fig.8.2 (d))
- 5. At this time, push on the back of the board over the connector. The force required for connector insertion is about 10 kgf. If the connector will not insert easily, re-check the alignment of the connector to prevent damaging the connector(s). In case that CPU CARD is standard, do not press the radiation fin installed on the CPU and LSI chip. Otherwise, the CPU or LSI chip can be damaged. (Fig.8.2 (e))
- 6. Push in the spacer metal fitting to lock the board in place. (Fig. 8.2 (f))

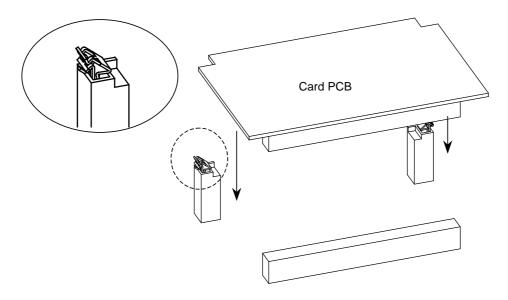


Fig.8.2 (c) Mounting a card

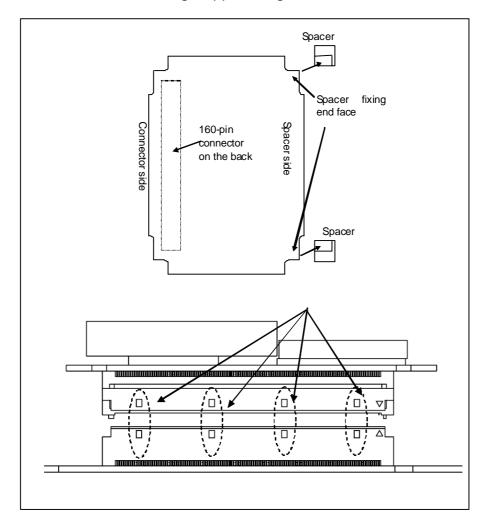


Fig.8.2 (d) Mounting a card

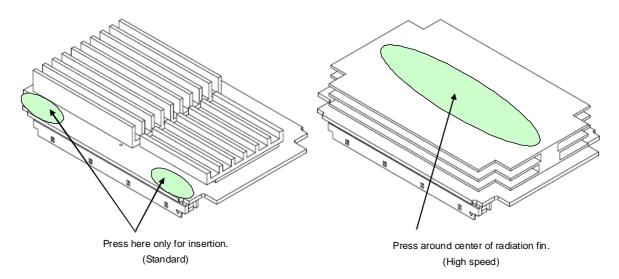


Fig.8.2 (e) Mounting a card

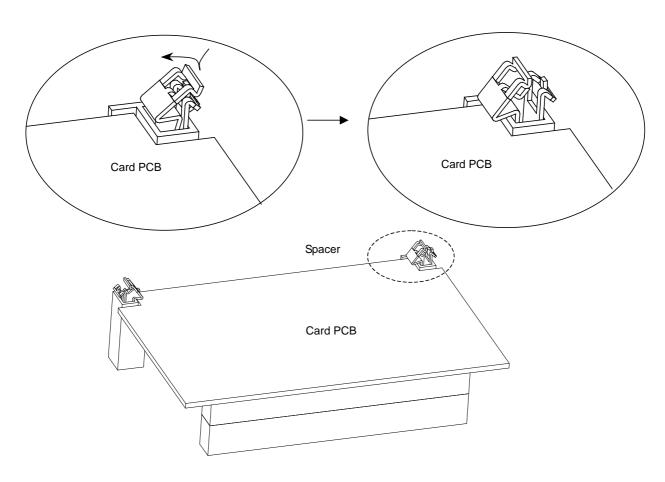
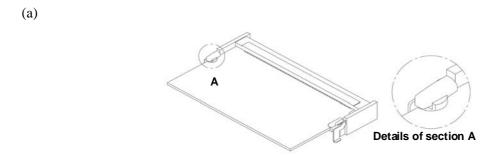
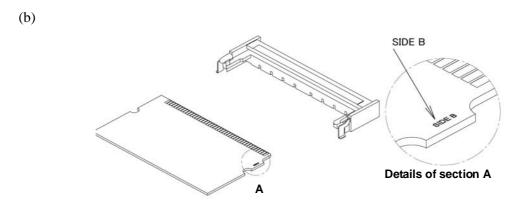


Fig.8.2 (f) Mounting a card

Demounting a module

Î


CAUTION


When replacing the module, be careful not to touch the module contact. If you touch the contact inadvertently, wipe out dirt on the contact with a clean cloth.

- (1) Move the clip of the socket outward. (a)
- (2) Extract the module by raising it at a 30 degree slant and pulling outward.

Mounting a module

- (1) Insert the module at a 30 degree slant into the module socket, with side B facing upward. (b)
- (2) Push the module inward and downward until it is locked. (c)

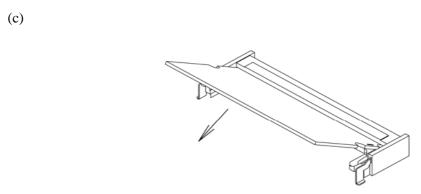


Fig.8.2 (g) Demounting/mounting a module

Figure 8.3 (h) shows the locations of the cards and modules.

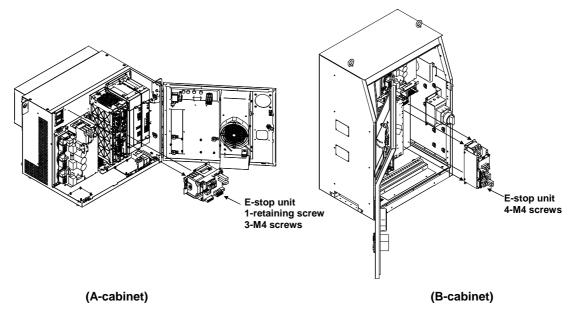
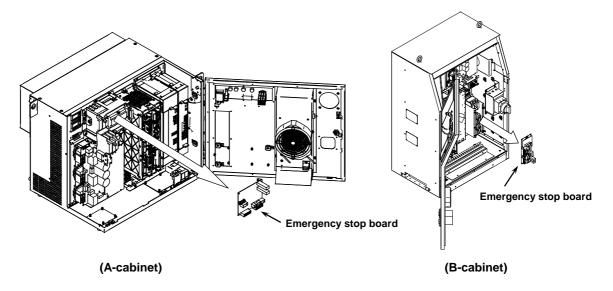



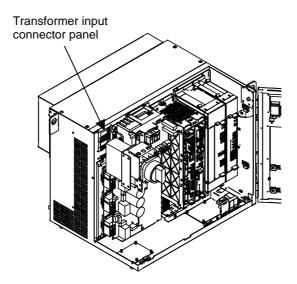
Fig.8.2 (h) Locations of cards and modules


8.3 REPLACING THE E-STOP UNIT

- (1) Detach the cables from the E-stop unit.
- (2) Loosen 1-retaining screw and 3-M5 screws, and replace the E-stop unit.(A-cabinet) Remove 4-M4 screws, and replace the E-stop unit.(B-cabinet)
- (3) Reconnect the cables.

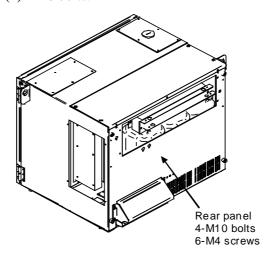
8.4 REPLACING THE EMERGENCY STOP BOARD

- (1) Detach the cables from the emergency stop board unit.
- (2) Unlock the nylon latches (5 places) holding the board, and replace the board.
- (3) Reconnect the cables.

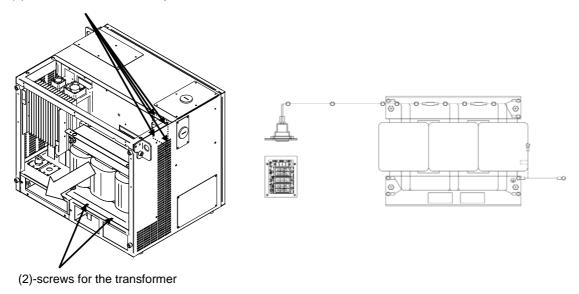

8.5 REPLACING THE TRANSFORMER

⚠ WARNING

The transformer is heavy. When replacing the transformer, be careful not to cause injury. (The transformer weighs 45 to 60 kg.)

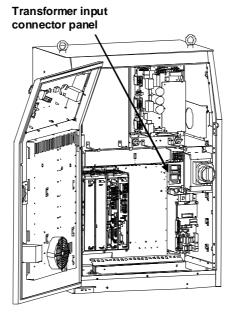

In case of A-cabinet

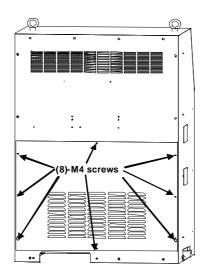
(1) Disconnect all cables from the transformer input connector panel.



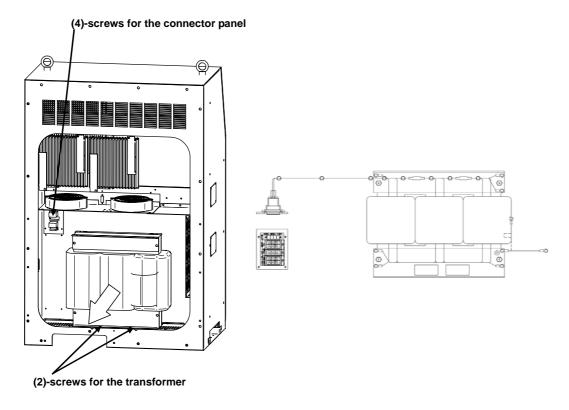
- (2) Remove the rear fan unit.
- (3) Remove the regenerative resister.

(4) Remove the rear panel. Remove (6)-M4 screws and (4)-M10 bolts.


- (5) Remove (4)-screws from the transformer input connector panel, and remove the (2)-M6 screws at the foot of the transformer. Then replace the transformer.
 - (4)-screws for the connector panel


(6) Install a replacement transformer by reversing above steps.

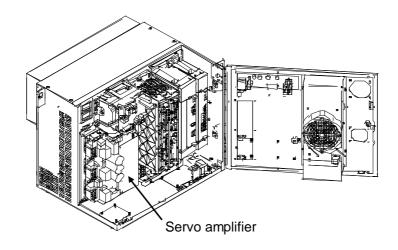
In case of B-cabinet


(1) Disconnect all cables from the transformer input connector panel.

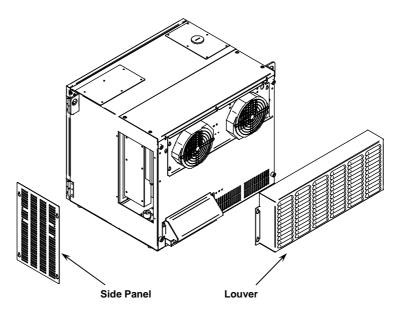
(2) Remove the rear panel. Remove (8)-M4 screws.

(3) Remove (4)-screws from the transformer input connector panel, and remove the (2)-M6 screws at the foot of the transformer. Then replace the transformer.

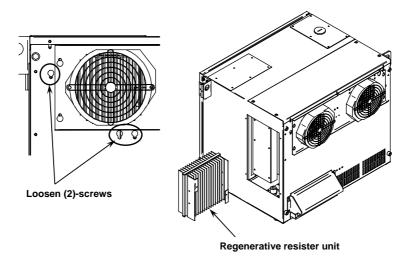
(4) Install a replacement transformer by reversing above steps.


8.6 REPLACING THE REGENERATIVE RESISTOR UNIT

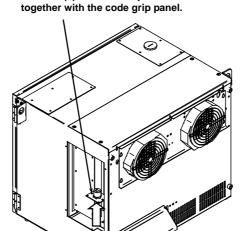
⚠ WARNING


Before you start, turn off the controller main power. Be careful not to get burned, because the regenerative resistor unit is very hot immediately after operation.

In case of A-cabinet


(1) Unplug CRR63A/B and CRR11A/B connectors from the servo amplifier. In case the cables of these connectors were fastened by cable ties, cut the cable ties to free the cables.

(2) Remove the side panel and the louver from the A-cabinet.



(3) Loosen two screws near the rear fan unit and lift up the regenerative resister unit so that it comes off from the rear panel of the cabinet.

(4) Remove four screws at the code grip panel and pull out the cable together with the panel. Then the regenerative resister unit is separated from A-cabinet.

Remove (2)-screws and pull out the cable

(5) Install a replacement unit by reversing above procedure.

In case of B-cabinet

- (1) Remove the servo amplifier. (See Section 8.7)
- (2) Remove the code grip panel securing the cable of the regenerative resistor.
- (3) If a cable is fastened with cable ties, cut them with a diagonal cutter to release the cable. Be careful not to damage the cable.
- (4) Of the two nuts fastening the regenerative resistor, remove the upper nut, loosen the lower nut, and then remove the regenerative resistor.

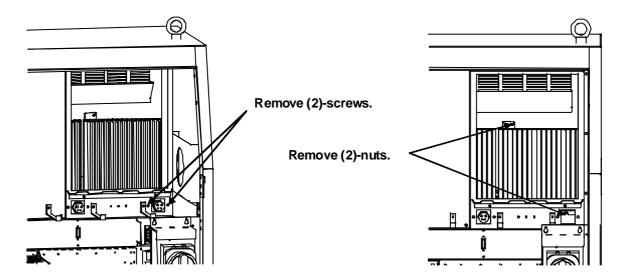


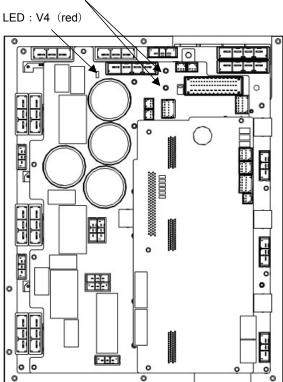
Fig. 8.6 Regenerative resister

(5) Install a replacement unit by reversing above procedure.

8.7 REPLACING SERVO AMPLIFIERS

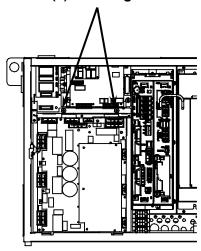
⚠ WARNING

Before touching the servo amplifier, for example, for maintenance purposes, check the voltage at the screw above the LED "V4" with a DC voltage tester to see if the remaining voltage is not higher than 50V.


! CAUTION

Because the servo amplifier is heated immediately after operation, leave the servo amplifier until it cools down thoroughly, before replacing it.

In case of A-cabinet


(1) Check the voltage at the screw above the LED "V4" with a DC voltage tester to see if the remaining voltage is not higher than 50V.

Check that the voltage is not higher than 50V.

- (2) Detach the cables from the servo amplifier. Pull out the detached cables away from the amplifier.
- (3) Loosen 2-retaining screws at the upper side of the servo amplifier.
- (4) Hold the handle at the upper side of the amplifier and pull to tilt it.
- (5) Lift up the amplifier and pull out from the cabinet.
- (6) Install a replacement amplifier by reversing above procedure.

Loosen (2)-retaining screws.

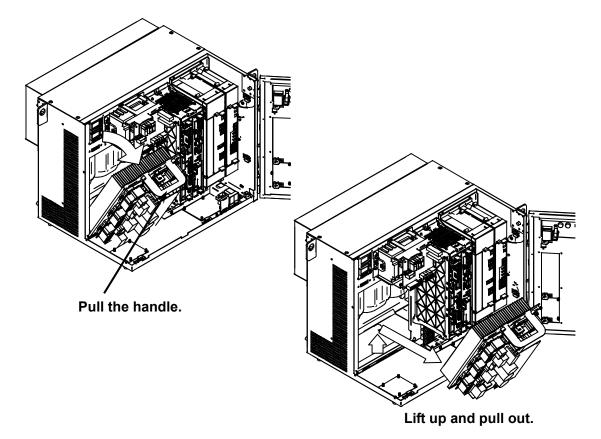
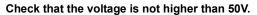
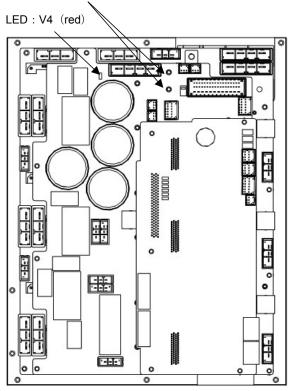
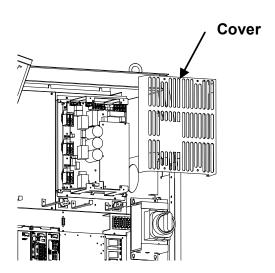
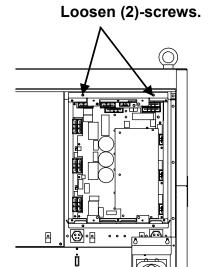
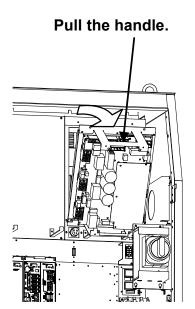




Fig.8.7(a) Replacing the servo amplifier (A-cabinet)


In case of B-cabinet


- (1) Make sure that servo amplifier shipping screws (2 phillips head) have been removed. Retain screws for shipping purposes.
- (2) Check the voltage at the screw above the LED "V4" with a DC voltage tester to see if the remaining voltage is not higher than 50V.



- (3) Remove the cover from servo amplifier.
- (4) Detach the cables from the servo amplifier. Pull out the detached cables away from the amplifier.
- (5) Loosen 2-retaining screws at the upper side of the servo amplifier.
- (6) Hold the handle at the upper side of the amplifier and pull to tilt it.
- (7) Lift up the amplifier and pull out from the cabinet.
- (8) Install a replacement amplifier by reversing above procedure.

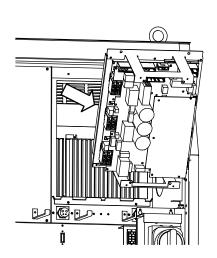


Fig.8.7(b) Replacing the servo amplifier (B-cabinet)

8.8 REPLACING I/O UNIT-MODEL A

8.8.1 Replacing the Base Unit of I/O Unit-MODEL A

First, dismount the modules from the base unit of I/O Unit-MODEL A. The base unit is retained with 4 screws. Of these screws, loosen the upper 2 screws and remove the lower 2 screws, then replace the base unit.

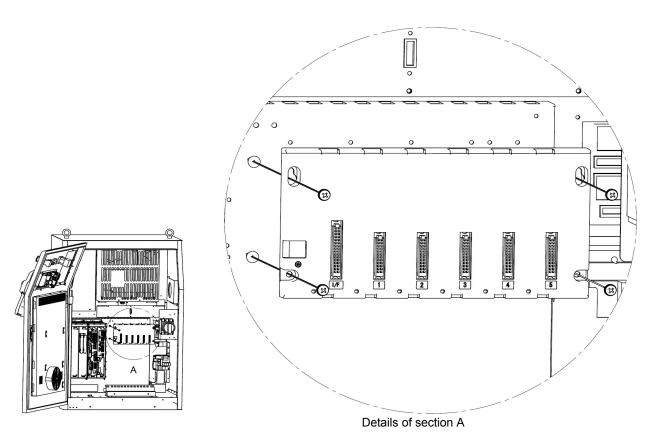


Fig.8.8.1 Replacing the base unit of I/O unit model A

8.8.2 Replacing a Module

An interface module and input/output module can be easily installed in and removed from the base unit, as described below.

Installing a module

- (1) Put the upper hook of the module into the upper hole of the base unit.
- (2) Fit the connectors of the module and the base unit to each other.
- (3) Push the module until the lower stopper of the module is caught in the lower hole of the base unit.

Removing a module

- (1) Press the lever at the bottom of the module to release the stopper.
- (2) Lift the module up.

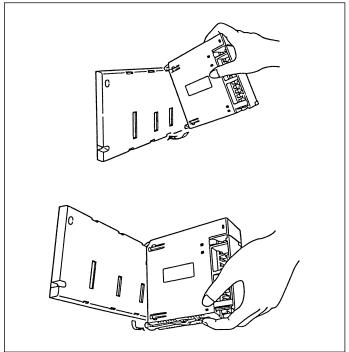


Fig.8.8.2 Replacing the module

8.9 REPLACING THE TEACH PENDANT

The specifications of the teach pendant vary with its use. When you replace the teach pendant, check its specifications carefully.

- (1) Be sure that the power of a robot controller is off.
- (2) Detach the cable from the teach pendant.
- (3) Replace the teach pendant.

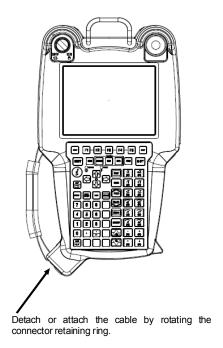


Fig.8.9 Replacing the teach pendant

8.10 REPLACING THE CONTROL SECTION FAN MOTOR

The control section fan motor can be replaced without using a tool. The fan motor is mounted on the fan unit rack.

- (1) Be sure that the power of a robot controller is off.
- (2) Put your finger in the dent in the upper section of the fan unit, and pull the fan unit until it is unlatched.
- (3) Lift the fan unit slightly, and dismount it from the rack.
- (4) Place a replacement fan on the upper section of the rack, and slide it gently until it is latched.

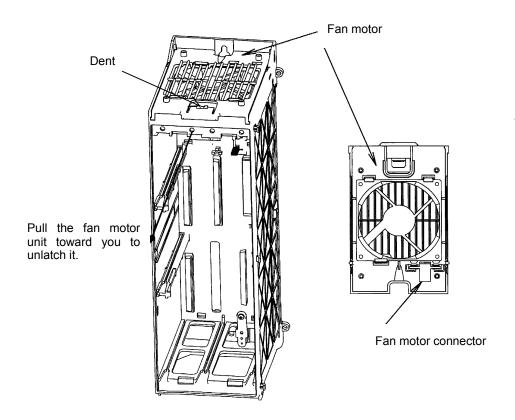


Fig.8.10 Replacing the control section fan motor

B-83195EN/07

8.11 REPLACING THE AC FAN MOTOR

⚠ WARNING

Do not touch the fan motor when it is rotating, or you could be injured.

8.11.1 Replacing the Heat Exchanger and Door Fan Unit (A-cabinet)

The heat exchanger of the A-cabinet is inside its door. To replace the heat exchanger, it is necessary to remove the door fan unit in advance.

Door fan unit

- (1) Remove retaining screws (M4, 4 places).
- (2) Disconnect the connector at the FAN.
- (3) Mount the replacement fan unit by reversing above procedure. Be careful not to let the cable get caught in the fan.

Heat exchanger

- (1) Dismount the door fan unit. (See the above procedure.)
- (2) Open the A-cabinet door, and detach cables.
- (3) Remove retaining nuts (M5, 4 places), and dismount the unit.
- (4) Mount the replacement unit by reversing above procedure.

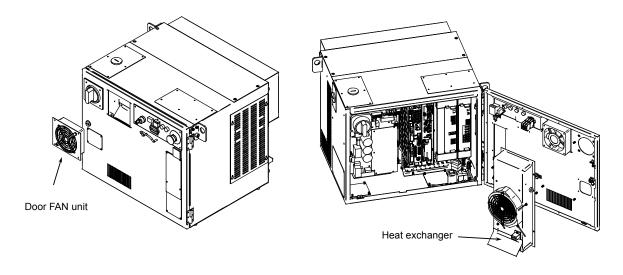
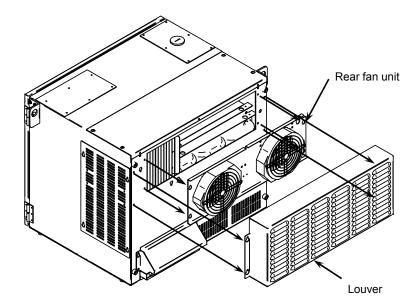



Fig.8.11.1 Replacing the heat exchanger and door fan unit (A-cabinet)

8.11.2 Replacing Rear Fan Unit (A-cabinet)

- (1) Loosen the 4-screws(M4) of the louver, then remove it.
- (2) Loosen 4-screws(M4), and then detach the fan unit.
- (3) Unplug the connector at the cabinet.
- (4) Mount the replacement unit by reversing above procedure.

Pinch and pull the connector hood to unplug the connector.

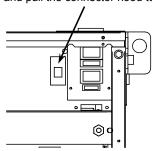
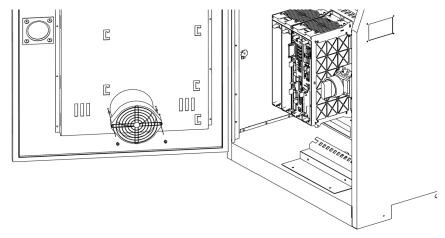
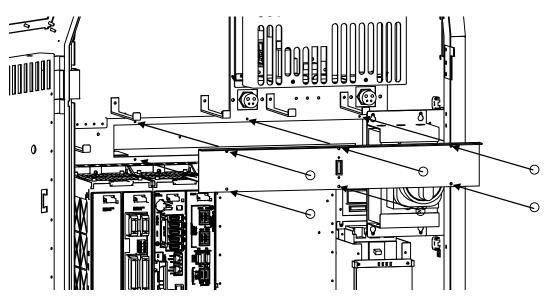



Fig.8.11.2 Replacing rear fan unit (A-cabinet)

8.11.3 Replacing External Fan Unit and Door Fan (B-cabinet)

Door fan


- (1) Detach the cable from the fan unit.
- (2) Remove the retaining screws from the fan unit, then dismount it.
- (3) Install a new fan unit by reversing the dismounting procedure.

(Replacing the Door Fan Unit)

External fan unit

- (1) Detach the cable connecting the fan unit.
- (2) Remove the screws and pull out the fan unit toward you.
- (3) Install a new fan unit by reversing the dismounting procedure.

(Replacing the External Fan Unit)

8.12 REPLACING BATTERY

8.12.1 Battery for Memory Backup (3 VDC)

The programs and system variables are stored in the SRAM in the main board. The power to the SRAM memory is backed up by a lithium battery mounted on the front panel of the main board. The above data is not lost even when the main power of controller is turned off. A new battery can maintain the contents of memory for about 4 years (Note).

When the voltage of the battery becomes low, the low-voltage battery alarm (system-035) is displayed on the teach pendant. When this alarm is displayed, replace the battery as soon as possible. In general, the battery can be replaced within one or two weeks, however, this depends on the system configuration.

If the battery voltage gets lower, it becomes impossible to back up the content of the SRAM. Cycling power to the controller in this state causes system not to start, and LED located on the main board displays "1" because the contents of memory have been lost. Clear the entire SRAM memory and reenter data after replacing the battery. Important data should be saved to the memory card or other external device beforehand in case of emergency.

NOTE

In a newly introduced robot, the battery is factory-installed. Battery replacement may, therefore, be needed within 4 years after the introduction of the robot.

Replacing the lithium battery

- (1) Prepare a new lithium battery (ordering drawing number: A02B-0200-K102, A98L-0031-0012).
- (2) Turn the robot controller on for about 30 seconds.

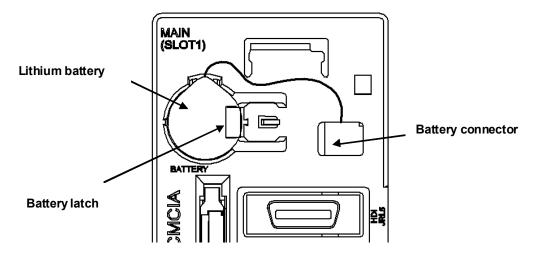
⚠ CAUTION

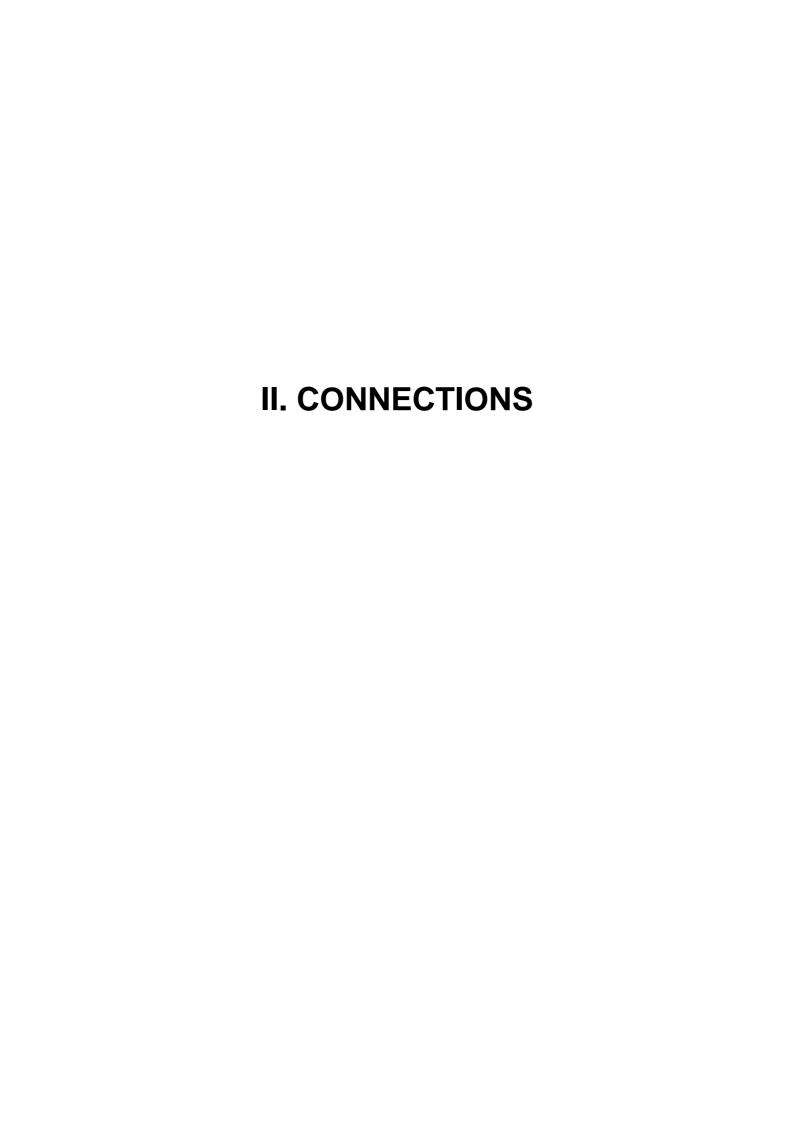
Complete the steps (3) to (5) within 30 minutes.

If the battery is left disconnected for a long time, the contents of memory will be lost.

To prevent possible data loss, it is recommended that the robot data such as programs and system variables be backed up before battery replacement.

- (3) Turn the robot controller off.
- (4) Remove the old battery from the top of the main board. First unlatch the battery, remove it from the battery holder, and detach its connector.



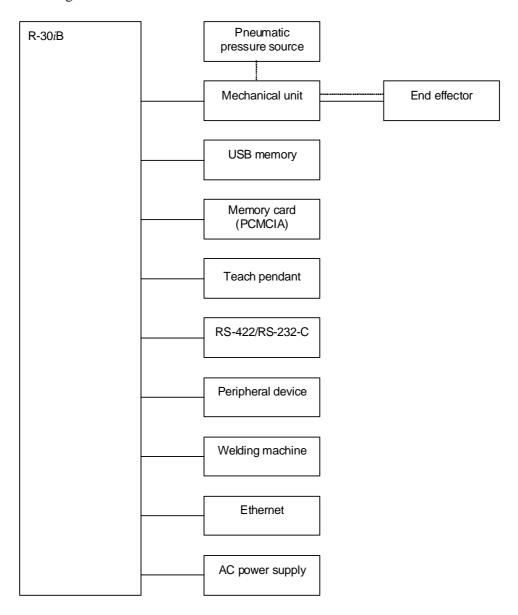

Fig.8.12.1 Replacing the lithium battery

(5) Remove the old battery, insert a new one into the battery holder, and attach the connector. Confirm that the battery is latched firmly.

⚠ WARNING

Using other than the recommended battery may result in the battery explosion. Replace the battery only with the specified battery (A02B-0200-K102, A98L-0031-0012).

Dispose of the replaced battery as an industrial waste, according to the laws and other rules in the country where the controller is installed and those established by the municipality and other organizations that have jurisdiction over the area where the controller is installed.



1 GENERAL

This section describes the electrical interface connections in the R-30*i*B. It also includes information about installation of the R-30*i*B.

2 BLOCK DIAGRAM

Fig.2 is a block diagram of electrical interface connections with the R-30*i*B.

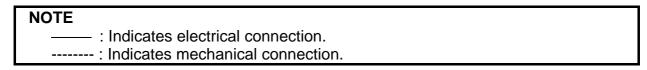


Fig.2 Block diagram of electrical interface connection

3 ELECTRICAL CONNECTIONS

3.1 CONNECTION DIAGRAM BETWEEN MECHANICAL UNITS

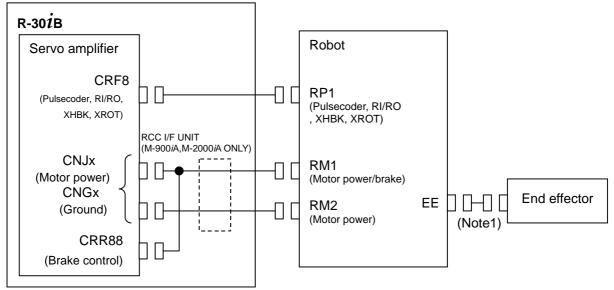
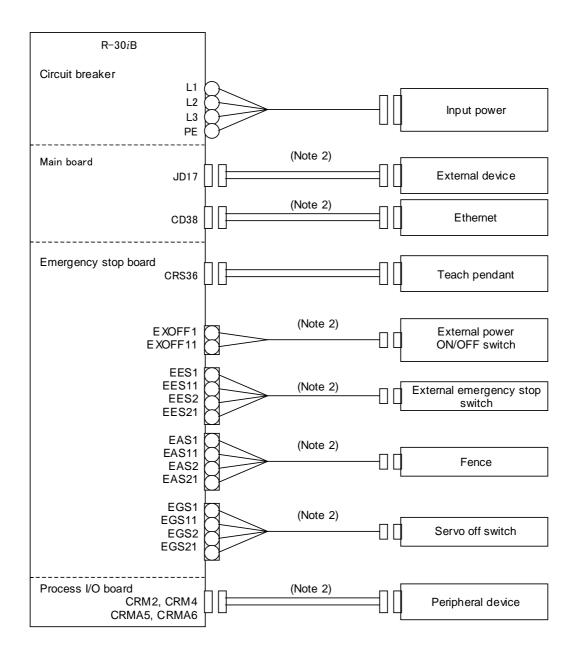



Fig.3.1 (a) Mechanical connection diagram

NOTE

This cable is not included. It must be supplied by the customer.

NOTE

- 1 For detail of the peripheral device connection, see the section of Peripheral device interface.
- 2 This cable is not included. It must be supplied by the customer.

Fig.3.1 (b) Unit-to-unit connection diagram

3.2 FANUC I/O LINK

3.2.1 Connection of I/O Link

The connection of I/O links in the R-30*i*B is shown below.

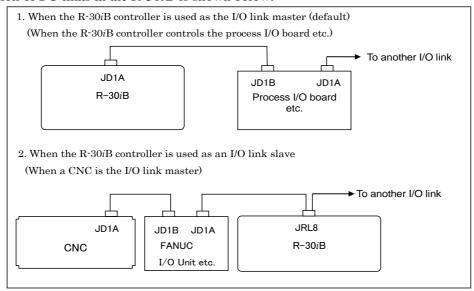


Fig.3.2.1 Connection of I/O links

3.2.2 Connection of the I/O Link Cable

- 1. Connect the cable according to the system. Be sure to perform shielding.
- 2. Before connection turn off the power.

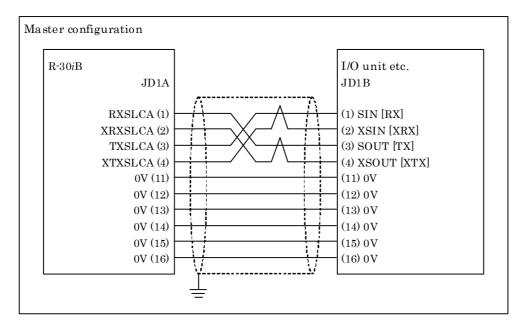
NOTE

For connection with the CNC with I/O links, turn on or off the power of the CNC and the robot controller at the following timing.

- a) Slave units and the master must be powered on at the same time.
- b) If the CNC or robot controller is powered off after startup of the system, an I/O link error occurs. To successfully make connection with I/O links again, power off all of the units and then power them on at the timing indicated in a).

When used as master interface JD1A interface

litteriace							
1	RXSLCA	11	0V				
2	*RXSLCA	12	0V				
3	TXSLCA	13	0V				
4	*TXSLCA	14	0V				
5		15	0V				
6		16	0V				
7		17					
8		18	+5V				
9	+5V	19	+24E				
10	+24E	20	+5V				


When used as slave interface JRL8 Interface

1	RXSLCB	11	*HDI0
2	0V	12	0V
3	*RXSLCB	13	*HDI1
4	0V	14	0V
5	TXSLCB	15	*HDI2
6	RXSLCC	16	0V
7	*TXSLCB	17	*HDI3
8	*RXSLCC	18	0V
9	TXSLCC	19	*HDI4
10	*TXSLCC	20	0V

(1) When the R-30iB controller is used as the I/O link master, use a twisted-pair cable in which wires

- RXSLCA(Pin No.1 of JD1A) and *RXSLCA(Pin No.2 of JD1A) are paired and wires TXSLCA(Pin No.3 of JD1A) and *TXSLCA(Pin No.4 of JD1A) are paired.
- (2) When the R-30iB controller is used as the I/O link slave, use a twisted-pair cable in which wires RXSLCB(Pin No.1 of JRL8) and *RXSLCB(Pin No.3 of JRL8) are paired and wires TXSLCB(Pin No.5 of JRL8) and *TXSLCB(Pin No.7 of JRL8) are paired.
- (3) Shield the cable collectively and ground the shield on the CNC side.

Cable connection diagram

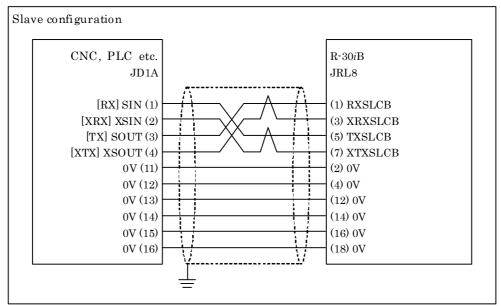


Fig.3.2.2 Connection diagram of I/O Link cable

3.3 EXTERNAL CABLE WIRING DIAGRAM

3.3.1 Robot Connection Cables

⚠ CAUTION

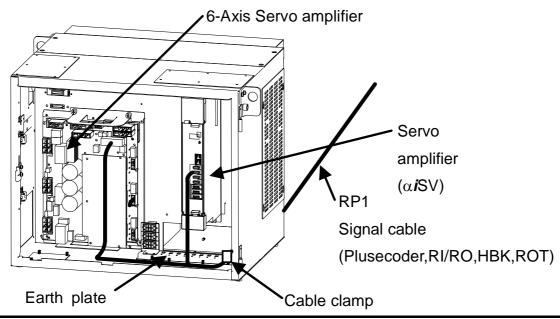
Before operating the robot, uncoil the interconnection cables from their shipping position to prevent excessive heat, which may damage the cables.

(Coiled part should be shorter than 10 meter.)

There are two types of the robot connection cable;

Non-flex type: usage is restricted to fixed laying Flex type: possible to use in the cable track

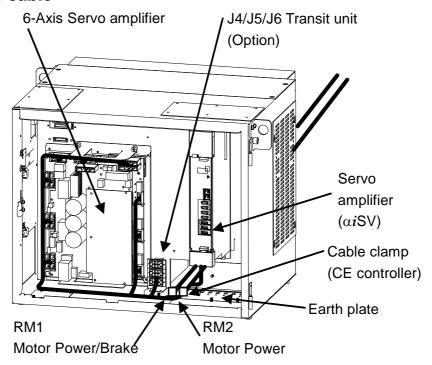
Specification of cable


				Non-flex type			Flex type	
		Robot	Diameter (mm)	Weight (kg/m)	Minimum bending radius (mm)	Diameter (mm)	Weight (kg/m)	Minimum bending radius (mm)
RP1		All models	16.0	0.45	200	20.5	0.71	200
RM1		Group 1 Group 3 Group 4 Group 5 Group 11	26.1	1.22	200	25.4	1.2	200
		Group 2 Group 6	20.0	0.7	200	18.4	0.7	200
RM2		Group 3 Group 4 Group 5	26.1	1.22	200	25.4	1.2	200
DMD	RP	Group7	16.0	0.45	200	20.5	0.71	200
RMP	RM	Group8	20.0	0.7	200	18.4	0.7	200
EARTH		All models	4.7	0.065	200	4.7	0.065	200

Group1	R-1000iA ,R-2000iB (Except /200T,220U,220US),R-2000iC,M-420iA,M-421iA,M-710iC,
Group2	F-200 <i>i</i> B
Group3	R-2000 <i>i</i> B/200T,220U,220US,M-410 <i>i</i> B
Group4	M-900 <i>i</i> A/150P,260L,350
Group5	M-900 <i>i</i> A/400L,600,M-900 <i>i</i> B/400L,700
Group6	M-430 <i>i</i> A/2PH,4FH
Group7	M-430 <i>i</i> A/2P
Group8	ARC Mate 100iC,ARC Mate 120iC,M-10iA,M-20iA,CR-35iA
Group11	M-2iA, M-3iA

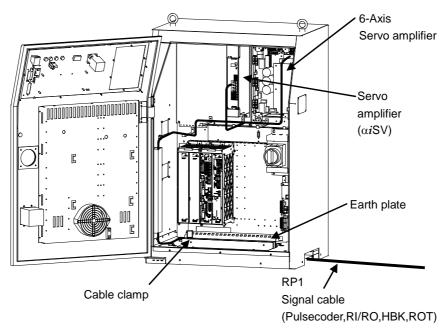
Using condition of flex type cable

- (1) When routing cables in movable places, use a cable bearer.
- (2) The bending radius (R) of the cable track is more than 200mm.
- (3) The cable should be fixed to the cable track by using the clamp. (e.g. foam rubber)
- (4) The size of the hole to support a cable in the cable track should be more than 110% of the cable size and should have the gap more than 3mm.
- (5) When cables are laid in the cable track, pay attention for the cable not to be twisted.


Cable Route In case of A-cabinet Signal cable

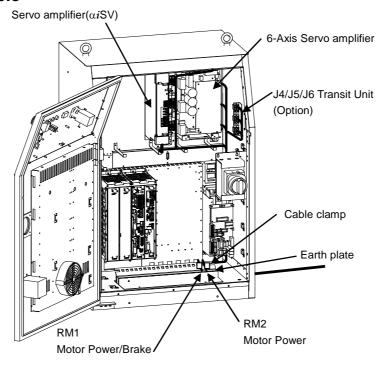
!\ CAUTION

Signal cable should be clamped to Earth plate by cable clamp.


Power/Brake cable

⚠ CAUTION

Power/Brake cable should be clamped to Earth plate by cable clamp.


In case of B-cabinet Signal cable

⚠ CAUTION

Signal cable should be clamped to Earth plate by cable clamp.

Power/Brake cable

⚠ CAUTION

Power/Brake cable should be clamped to Earth plate by cable clamp.

Group1: R-1000iA, R-2000iB(expect /200T,/220U,/220US), R-2000iC

M-420iA,M-421iA,M-710iC

Group2:F-200iB

Group11:M-2*i*A, M-3*i*A

Detail of cable connection to servo amplifier

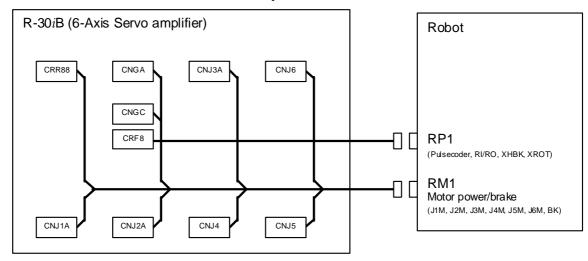


Fig.3.3.1 (a) Robot connection cable (Group1, Group2, Group11)

Robot Model

Group3:R-2000*i*B/200T,/220U,/220US, M-410*i*B

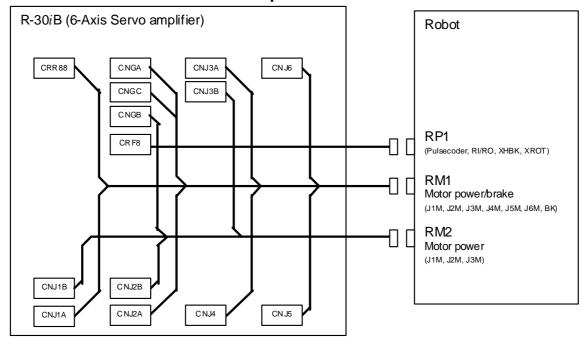


Fig.3.3.1 (b) Robot connection cable (Group3)

Group4:M-900iA/150P,/260L,/350

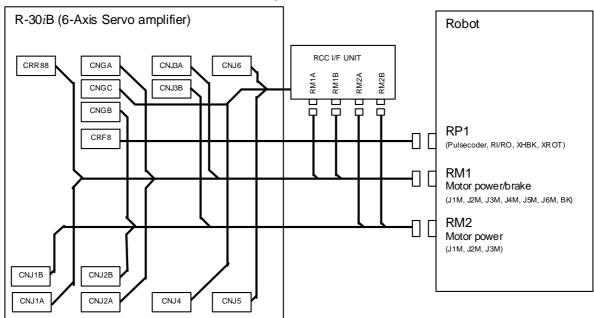


Fig.3.3.1 (c) Robot connection cable (Group4)

Group5:M-900iA/400L,/600,M-900iB/400L,/700

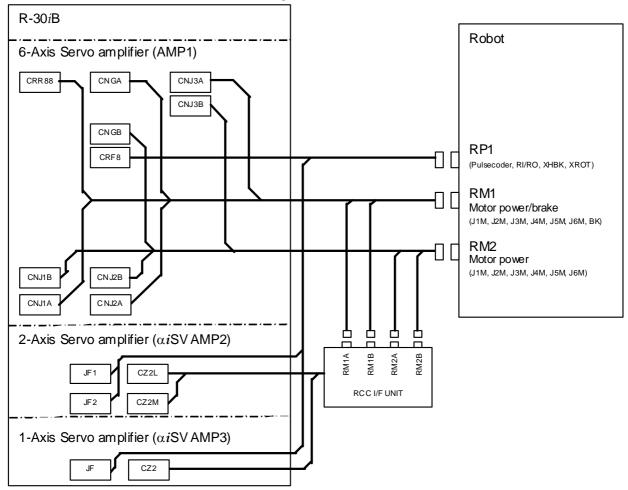


Fig.3.3.1 (d) Robot connection cable (Group5)

Group6:M-430*i*A/2PH,/4FH

Detail of cable connection to servo amplifier

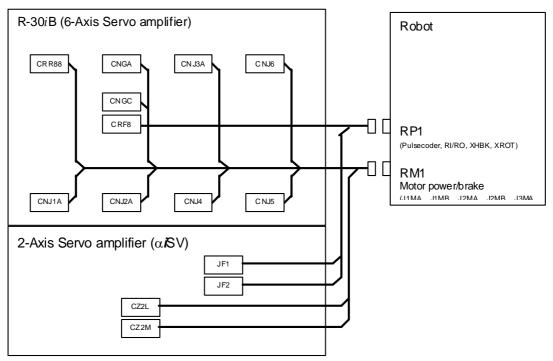
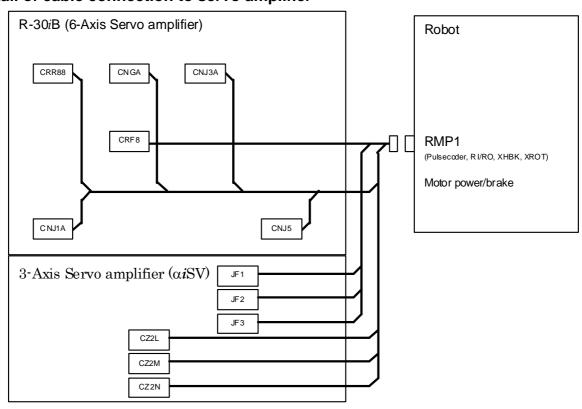
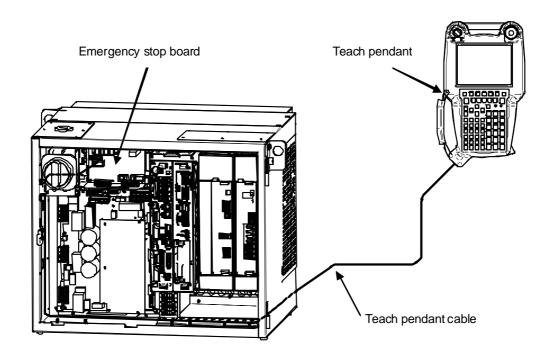


Fig.3.3.1 (e) Robot connection cable (Group6)

Robot Model

Group7:M-430*i*A/2P




Fig.3.3.1 (f) Robot connection cable (Group7)

Group8:ARC Mate 100*i*C, ARC Mate 120*i*C, M-10*i*A, M-20*i*A,CR-35*i*A Detail of cable connection to servo amplifier

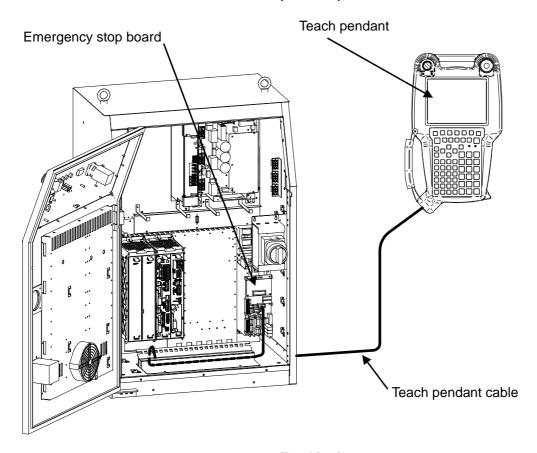


Fig.3.3.1 (g) Robot connection cable (Group8)

3.3.2 Teach Pendant Cable

(A-cabinet)

(B-cabinet)

Fig.3.3.2 Teach pendant cable

3.3.3 Connecting the Input Power

3.3.3.1 Connecting the input power cable

- (1) Fig3.3.3.1 shows the method of connecting the input power supply cable.
- (2) Use the input power cable according to the following Table 3.3.3.1. However, the input power cable according to the breaker or the fuse of the input power supply (power distribution panel) connected to the robot controller must be used.
- (3) Provide a class-D or better ground.

There shall be no switches or disconnects in the grounding conductor.

The resistance to the ground must not exceed 100Ω .

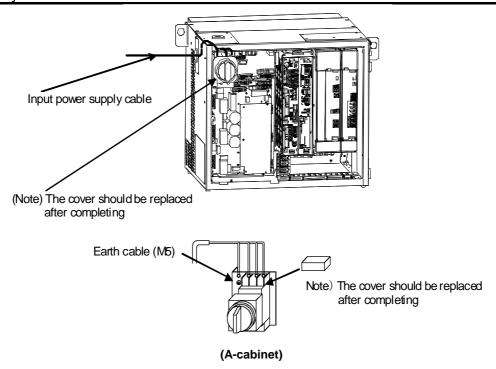
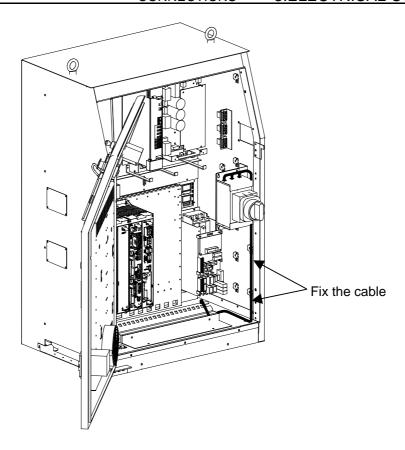
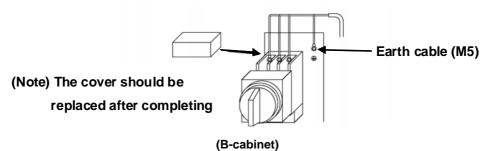

Use a thick wire to withstand the maximum current used.

Table 3.3.3.1 Conductor size and terminal size of AC power supply

Input Voltage	Input power source capacity (Refer to CONNECTIONS 5.3)	Conductor size of AC Power supply cable	Terminal size of AC power supply cable	Conductor size of earth cable	Terminal size of earth cable
400V	All robot	AWG10 or more (Note 1)	M5	WARNING 2	M5
200V	15KVA or more	AWG8 or more (Note 1)	M8	WARNING 2	M5
200V	12KVA or less	AWG10 or more (Note 1)	M5	WARNING 2	M5


. WARNING


- 1 The input power cable according to the breaker or the fuse of the input power supply (power distribution panel) connected to the robot controller must be used.
- 2 Use conductor of earth cable size is as well as the AC power supply cable size.
- 3 Disconnection of protective earth ground may impair the protection provided by the system.

∱ WARNING

The cover for primly terminal of main breaker should be replaced after completing.

⚠ WARNING

The cover for primly terminal of main breaker should be replaced after completing.

Fig.3.3.3.1 Connecting the input power cable

3.3.3.2 Leakage breaker

- (1) The motor is driven by the PWM inverter system using a power transistor bridge. A high-frequency leakage current flows through the stray capacitance between the ground and the motor coils, power cable, and amplifier. This might cause the leakage-current circuit breaker or leakage-protection relay installed in the path of the power supply to cut out.

 Use the following leakage current circuit breaker for inverters to prevent incorrect operation.
- (2) Leakage breaker using robot controller has sensitive electric current of 30mA.

Table 3.3.3.2 Example of leakage current circuit breaker for inverters

Manufacture	Туре
Fuji Electric Co., Ltd.	EG A series or later
	SG A series or later

Manufacture	Туре	
Hitachi, Ltd.	ES100C type or later	
	ES225C type or later	
Matsushita Electric Works, Ltd. Leakage current circuit breaker, C type or later		
	Leakage current circuit breaker, KC type or later	

3.3.3.3 Check input voltage

Setting of transformer tap is necessary depending on the input voltage.

The tap is set to the specified voltage before shipment. However, check it referring to section 6.2 in MAINTENANCE before supplying power (before the breaker switch is turned on).

3.3.3.4 On/off timing by the breaker

If the power supply is turned on, turned off, and then turned on again repeatedly in a short time, the controller may not be started up. If the power is turned off before the controller is completely started up (it takes about 30 seconds), wait for at least 10 seconds before turning on the power again.

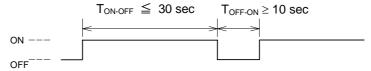
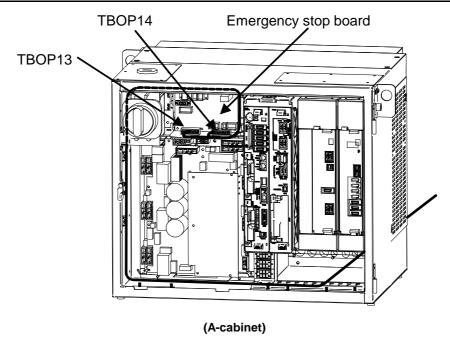



Fig.3.3.3.4 The power is turned off within 30 seconds after it has been turned on

3.3.4 Connecting the External Power Supply ON/OFF Switch

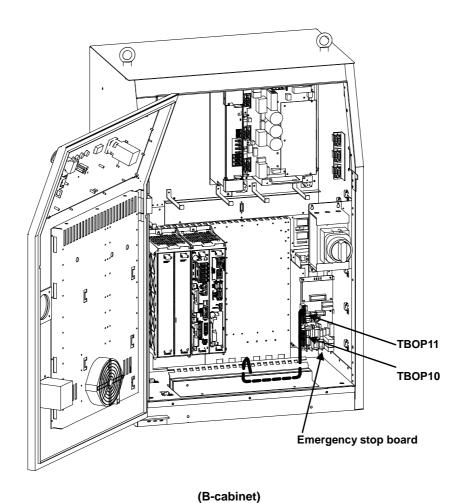
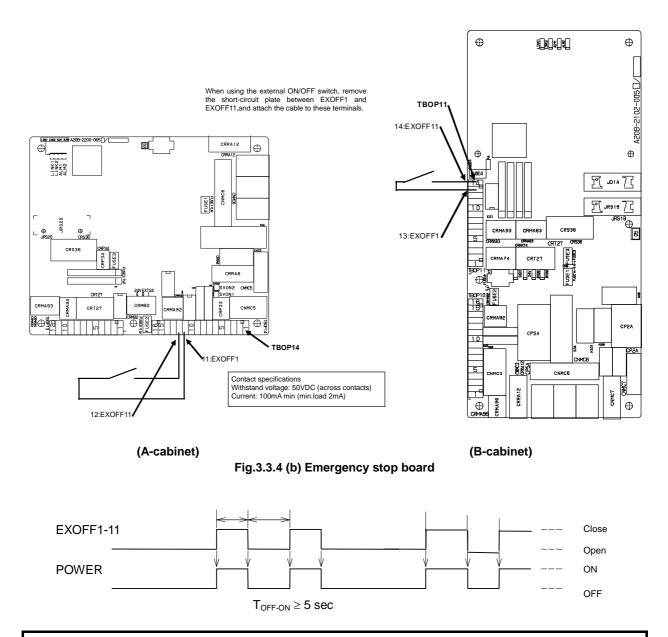



Fig.3.3.4 (a) Connection of the external power supply ON/OFF switch

NOTE

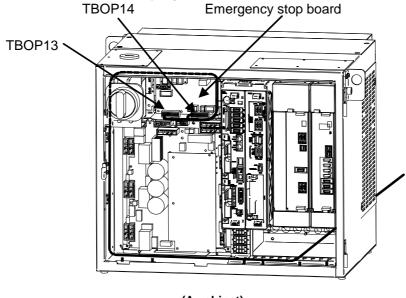

- 1 When the external power supply ON/OFF switch is set to ON (closed), the controller can be turned on and off by using the circuit breaker.
- 2 When the external power supply ON/OFF switch is set to OFF (open), the controller cannot be turned on and off by using the circuit breaker.

Fig.3.3.4 (c) Connection of the external power supply switch ON and OFF

3.3.5 Connecting the External Emergency Stop

After connecting the safety signals like external emergency stop signal and/or safety fence signal, verify that.

- · All safety signals stop the robot as intended.
- •There is no mistake in connection of safety signals.

(A-cabinet)

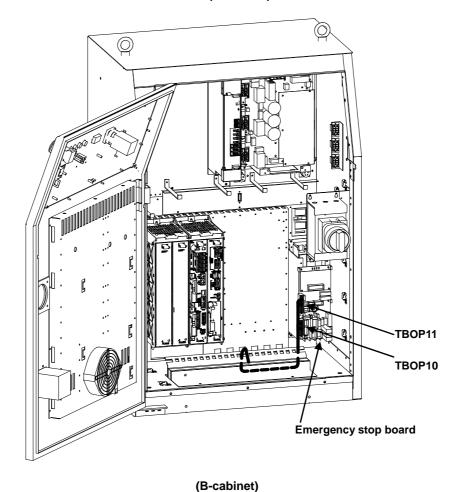


Fig.3.3.5 (a) Connecting the external emergency stop

External emergency stop output

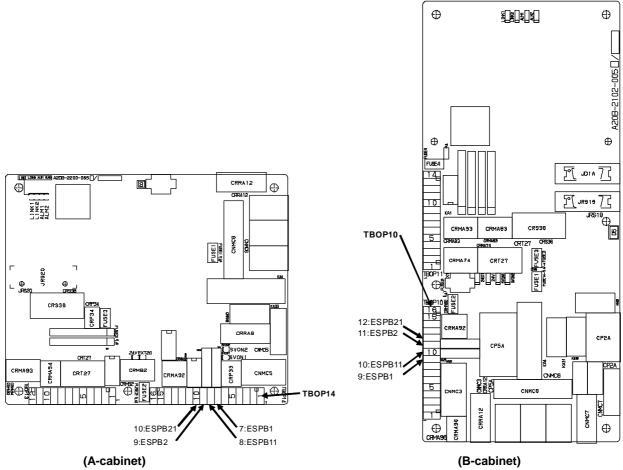
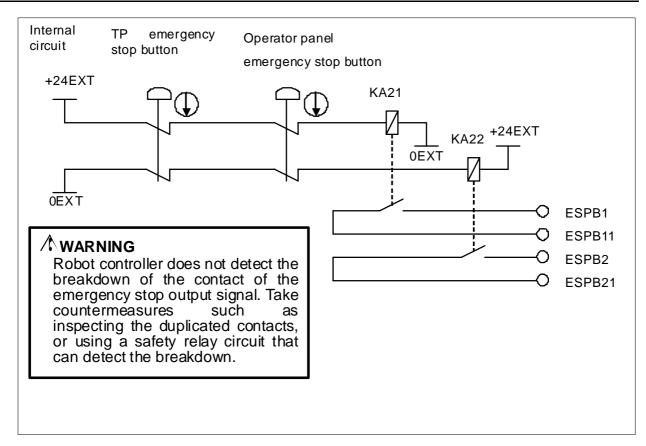
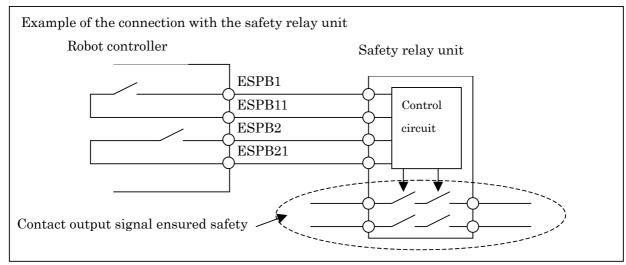
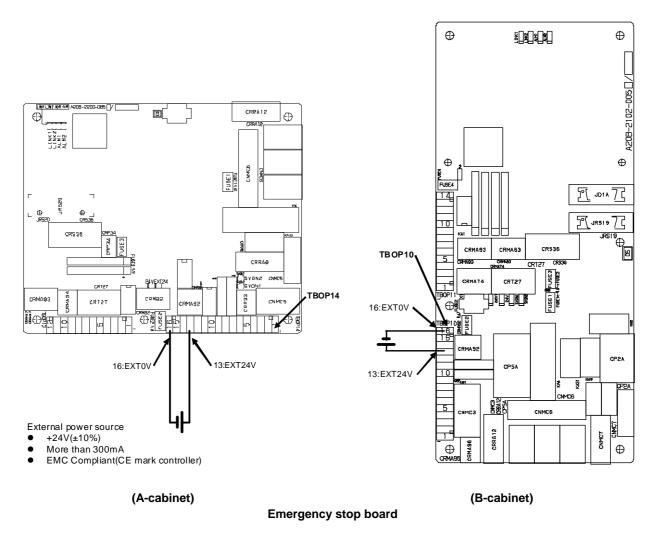
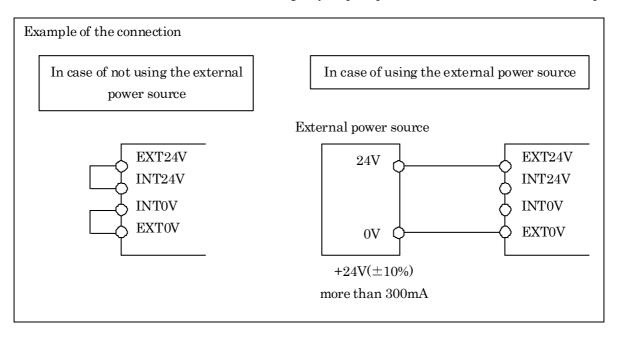
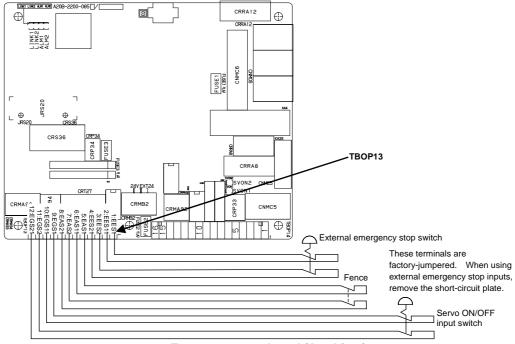




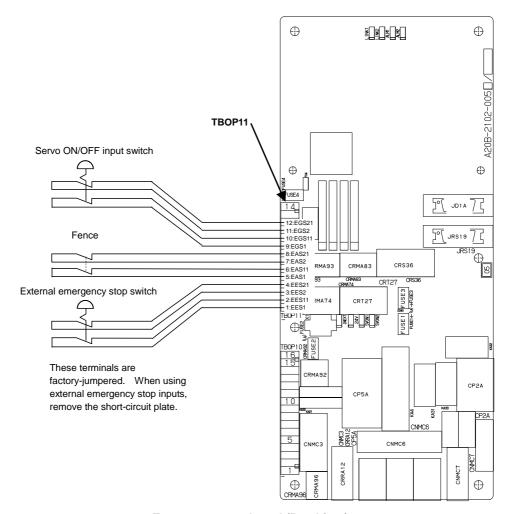
Fig. 3.3.5 (b) Emergency stop board


For the circuit, see Fig. A (i) (j) (k) (l) in Appendix A, "TOTAL CONNECTION DIAGRAM".

Signal	Description	Current, voltage	Min. load
ESPB1 — ESPB11	The contact is open when one of the	Rated contact:	(Reference value)
ESPB2 — ESPB21	TP emergency stop button or the	30 VDC, 5 A resistor load	DC5V 10mA
	Operator panel emergency stop button		
	is pressed. The contact is also open		
	while the controller is powered off		
	regardless of status of emergency		
	stop buttons. By connecting external		
	power supply to the emergency stop		
	circuit, the contact works even while		
	the robot controller is powered off.		
	(See "External power connection" of		
	this section) The contact is closed		
	during normal operation.		

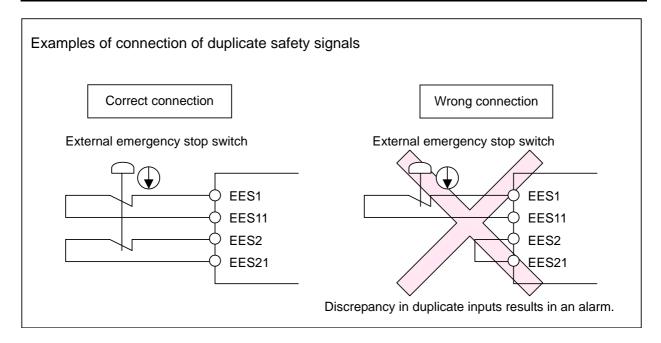



External power connection


The relays for emergency stop input and output can be separated from controller's power. Please connect external +24V instead of internal +24V, if emergency stop output must not be effected controller's power.

External emergency stop input

Emergency stop board (A-cabinet)



Emergency stop board (B-cabinet)

Signal	Description	Current, voltage
EES1	Connect the contacts of the external emergency stop switch to these terminals. When the contacts are open, the robot stops according to predetermined stop pattern. (Note 2) When using the contacts of a relay or contactor instead of the switch, connect a spark killer to the coil of the relay or contactor, to suppress noise. When these terminals are not used, jumper them.	Open and close of 24VDC 0.1A (Note 1)
EAS1 EAS11 EAS2 EAS21	These signals are used to stop the robot safely when the safety fence gate is opened during operation in the AUTO mode. When the contacts are open in the AUTO mode, the robot stops according to predetermined stop pattern. (Note 2) In the T1 or T2 mode and the DEADMAN switch is held correct position, the robot can be operated even when the safety fence gate is open. When using the contacts of a relay or contactor instead of the switch, connect a spark killer to the coil of the relay or contactor, to suppress noise. When these terminals are not used, jumper them.	Open and close of 24VDC 0.1A (Note 1)
EGS1	Connect the contacts of the servo-off input switch to these terminals When the contacts are open, the robot stops according to predetermined stop pattern. (Note 2) When using the contacts of a relay or contactor instead of the switch, connect a spark killer to the coil of the relay or contactor, to suppress noise. When these terminals are not used, jumper them.	Open and close of 24VDC 0.1A (Note 1)

NOTE

- 1. Use a contact which minimum load is 5 mA less.
- 2. See Chapter 7 in SAFETY PRECAUTIONS.

Input timing of duplicate safety signals

Duplicate inputs are used for signals such as the external emergency stop signal, safety fence signal, and servo off signal so that a response is made even when a single failure occurs. The statuses of these duplicate input signals must always be changed at the same timing according to the timing specifications provided in this section. The robot controller always checks that the statuses of the duplicate inputs are the same, and if the controller finds a discrepancy, it issues an alarm. If the timing specifications are not satisfied, an alarm may be issued because of a signal discrepancy.

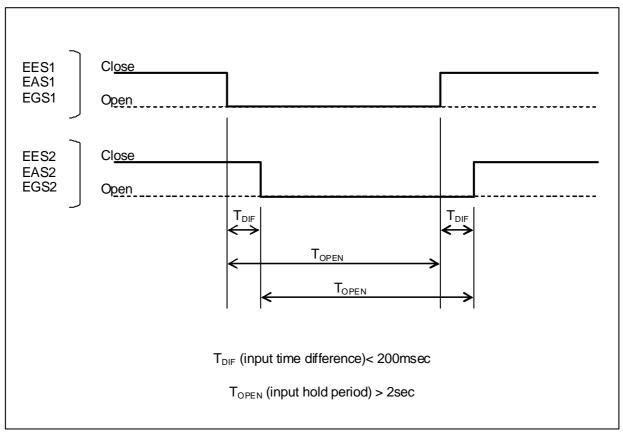
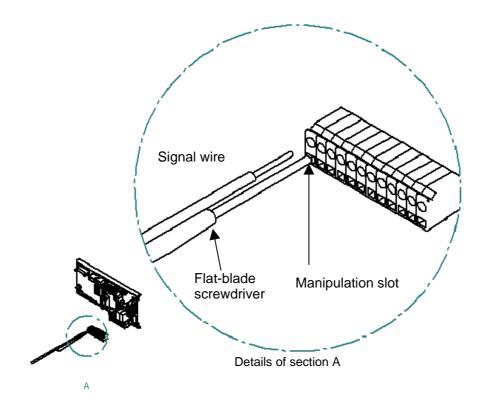


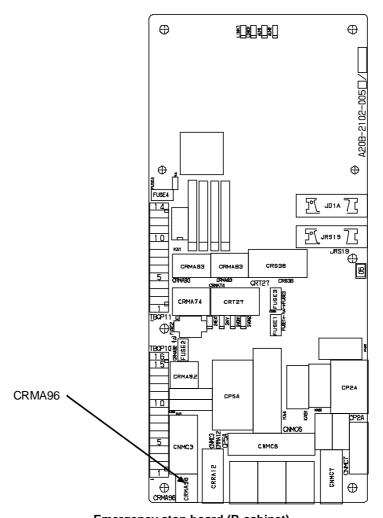
Fig.3.3.5(c) Input timing of duplicate safety signals

Connecting external on/off and external emergency stop signal input/output wires

	FANUC's specification	Manufacturer's specification (WAGO)	Remark
16-pole terminal block (TBOP14:A-cabinet) (TBOP10:B-cabinet)	A63L-0002-0154#116	734-116	
14-pole terminal block (TBOP11:B-cabinet)	A63L-0002-0154#114	734-114	
12-pole terminal block (TBOP13:A-cabinet)	A63L-0002-0154#112	734-112	
Jumper pin	A63L-0002-0154#402F	734-402F	
Operation lever	A63L-0002-0154#230-M	734-230	2 pieces of 734-230 and operation manual are included in FANUC's specification


- 1. Detach the plug connector block from the emergency stop board.
- 2. Insert the tip of a flat-blade screwdriver into the manipulation slot and push down its handle.
- 3. Insert the end of the signal wire into the wire slot.

- 4. Pull out the screwdriver.
- 5. Attach the plug connector block to the emergency stop board.

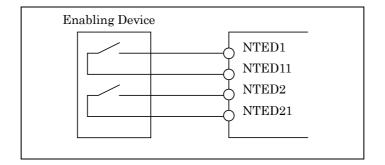

⚠ CAUTION

Do not insert a wire into the wire hole of a plug connector or pull it out with the plug connector block mounted on the emergency stop board; otherwise, the emergency stop board may be damaged.

FANUC recommends the lever (A05B-2600-K030) for connecting the signal wire to the plug connector block instead of Flat-blade screwdriver.

3.3.6 Connecting the Non-Teaching Enabling (NTED) Signal (CRMA96)(For B-cabinet)

Emergency stop board (B-cabinet) Fig.3.3.6 Connecting the NTED Signal (B-cabinet)


NTED signal is the signal to be able to connect with the switch that is same function as deadman switch on the teach pendant. In the auto mode, robot moves without reference to the state of the switch connected with NTED signal. CRMA96 connector is provided in B-cabinet.

Refer to "APPENDIX A, Total connection Diagram Fig.A (i) (j) (k) (l)" about NTED circuit. Input timing of NTED signal must comply with rules in the section "Input timing of duplicate safety signals".

! CAUTION

After connecting NTED switch, be sure to check the operation of those switches, the emergency stop button on the operator's panel/operation box, and the emergency stop button on the teach pendant.

CRMA96 connector

A1	NTED1	B1	NTED11
A2	NTED2	B2	NTED21
A3	(DM1)	В3	(DM2)

CRMA96 connector Specification

	TE Connectivity Specification	FANUC Specification
Rece-housing	1-1318119-3	A63L-0001-0812#R06DX
Rece-contact(AWG18-22)	1318107-1	A63L-0001-0812#CRM

3.3.7 Connecting the Auxiliary Axis Brake (CRR65 A/B)

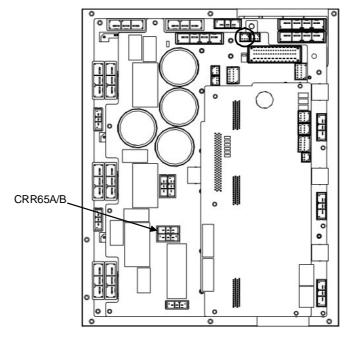


Fig.3.3.7 6-axis servo amplifier

CRR65 A/B

A1	BKA1	B1	BKA2
A2		B2	
A3	COMMON	B3	COMMON

Specification

Specification			
	TE Connectivity Specification	FANUC Specification	
Rece-housing	1-178128-3	A63L-0001-0460#032KSX	
Rece-contact	175218-2	A63L-0001-0456#ASL	

3.3.8 Connecting the Auxiliary Axis Over Travel (CRM68)

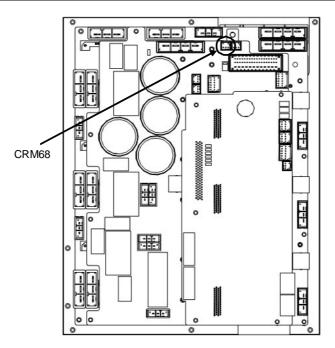


Fig.3.3.8 6-axis servo amplifier

CRM68

A1	AUXOT1
A2	AUXOT2
А3	

Specification

e poemoution					
	TE Connectivity Specification	FANUC Specification			
Rece-housing	1-1318120-3	A63L-0001-0812#R03SX			
Rece-contact	1318107-1	A63L-0001-0812#CRM			

4

PERIPHERAL DEVICE, ARC WELDING, AND END EE INTERFACES

R-30*i*B I/O peripheral device interfaces include printed circuit boards and a unit selected according to the applications. Table 4 lists details of the printed-circuit boards and units. Figure 4 shows the locations of these boards and units.

Table 4 Peripheral device interface types

No.	Name	Drawing number		Number of I/O points			Remarks
NO.	Name	Drawing number	DI	DO	D/A	A/D	Remarks
1	Process I/O board JA	A05B-2600-J001	96	96 (Source type)	0	0	Installed in back plane
2	Process I/O board JB	A05B-2600-J002	40	40 (Source type)	0	0	Installed in back plane
3	Process I/O board MA	A05B-2600-J020	20	16 (Source type)	0	0	Installed in A-cabinet
4	Process I/O board KA	A05B-2600-J010	40	40 (Source type)	3	2	Installed in A-cabinet top
							box
5	Process I/O board KB	A05B-2600-J011	40	40 (Source type)	2	0	Installed in A-cabinet top
							box
6	I/O Unit-MODEL A	A05B-2601-J130	Depending on selected I/O		A-cabinet (five slots)		
		(Base and	mod	ule.			
		interface unit)					
		A05B-2603-J130]			B-cabinet (five slots)	
		(Base and					
		interface unit)					

No.	Name	Drawing number		Number of I/O po	ints		Remarks
NO.	o. Name Drawing number		WI	WO	D/A	A/D	Remarks
7	Process I/O board MB	A05B-2600-J021	5	4 (Sink type)	2	0	Installed in A-cabinet

NOTE

1 General purpose I/O (DI/DO) is a number, which subtract an exclusive signal from the table value.

Example: Process I/O board JB

Table value Exclusive DI General purpose DI

DI;40 -18=22 points

Table value Exclusive DO General purpose DO

DO;40 -20=20 points

- 2 When there are slave units on the I/O Link and the power for control to these slave units is supplied from other than the robot controller, the power to the controller and the power to the slave units must be turned on and off at the following timings:
 - a) The power to the slave units must be turned on before or when the power to the controller, which is the master of the I/O Link, is turned on.
 - b) If the power to a slave unit is turned off after the system has started up, an I/O Link error occurs. To establish the I/O Link again, turn off the power to all units including the controller, then turn on the power to the units in the order described in a).

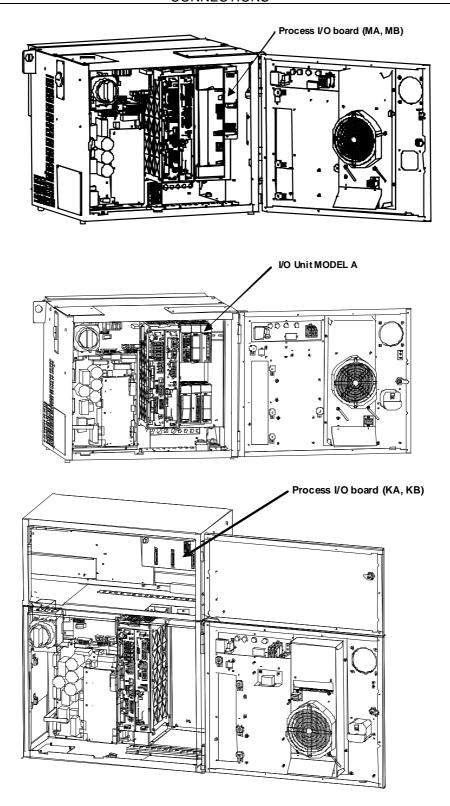


Fig.4(a) Locations of peripheral device interfaces (A-cabinet)

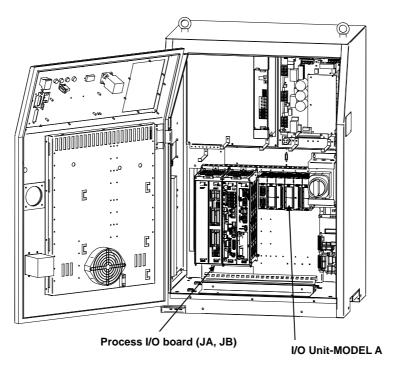


Fig.4(b) Locations of peripheral device interfaces (B-cabinet)

4.1 PERIPHERAL DEVICE INTERFACE BLOCK DIAGRAM

Following are a block diagram of the peripheral device interface and the specifications.

4.1.1 When Process I/O Board JA/JB is Used (B-cabinet)

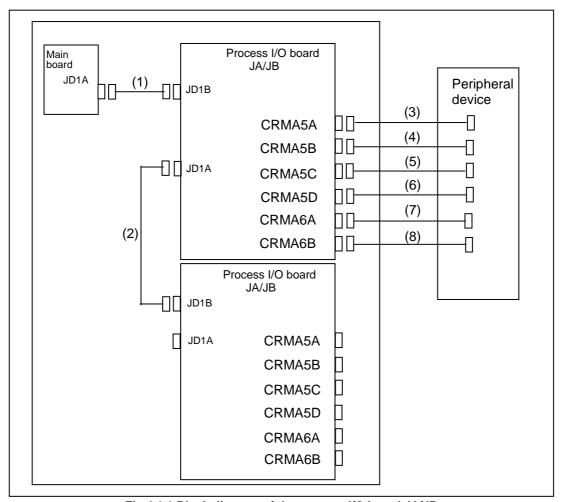


Fig.4.1.1 Block diagram of the process I/O board JA/JB

NOTE

The process I/O board JB has none of CRMA5C, CRMA5D, CRMA6A, and CRMA6B.

Number	Name	Drawing number	Remarks
(1)	I/O Link cable	A05B-2603-J170	Between main board and process I/O
(2)	I/O Link cable	A05B-2603-J171	Between process I/O and process I/O
(2) (4)	Peripheral device connection cable (Process I/O JA, JB)	A05B-2603-J200	Connected length: 10m (one)
(3) (4)		A05B-2603-J201	Connected length: 20m (one)
(5) (6)		A05B-2603-J202	Connected length: 30m (one)
(7)	Peripheral device connection cable (Process I/O JA)	A05B-2603-J203	Connected length: 10m (one)
(7)		A05B-2603-J204	Connected length: 20m (one)
(8)		A05B-2603-J205	Connected length: 30m (one)

4.1.2 When Process I/O Board MA is Used (A-cabinet)

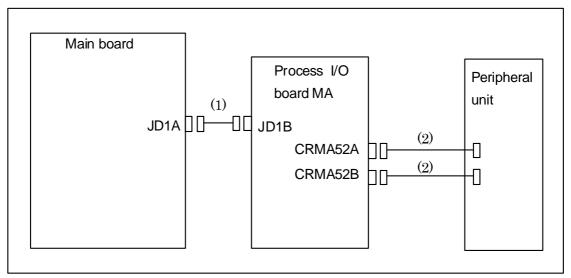


Fig.4.1.2 Block diagram of the process I/O MA

Number	Name	Drawing number	Remarks
(1)	I/O Link cable	A05B-2601-J172	
		A05B-2601-J240	Connection length 10m (one): CRMA52
(2)	Peripheral device cable	A05B-2601-J241	Connection length 20m (one): CRMA52
		A05B-2601-J242	Connection length 30m (one): CRMA52

4.1.3 When Process I/O Board MB is Used (A-cabinet)

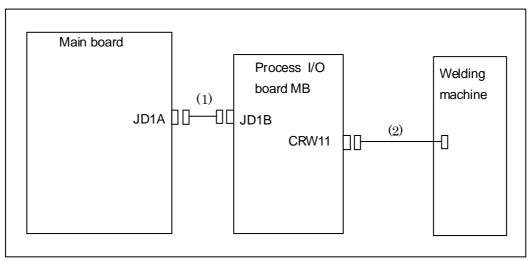


Fig.4.1.3 Block diagram of the process I/O MB

Number	Name	Drawing number	Remarks
(1)	I/O Link cable	A05B-2601-J174	
	Wolding machine connection coble	A05B-2601-J246	Connection length 3m (one): CRW11
	Welding machine connection cable (FANUC interface/elbow type) Welding machine connection cable (FANUC interface/straight type)	A05B-2601-J247	Connection length 7m (one): CRW11
(2)		A05B-2601-J248	Connection length 14m (one): CRW11
(2)		A05B-2601-J250	Connection length 3m (one): CRW11
		A05B-2601-J251	Connection length 7m (one): CRW11
		A05B-2601-J252	Connection length 14m (one): CRW11

4.1.4 When Process I/O Board KA/KB is Used (A-cabinet)

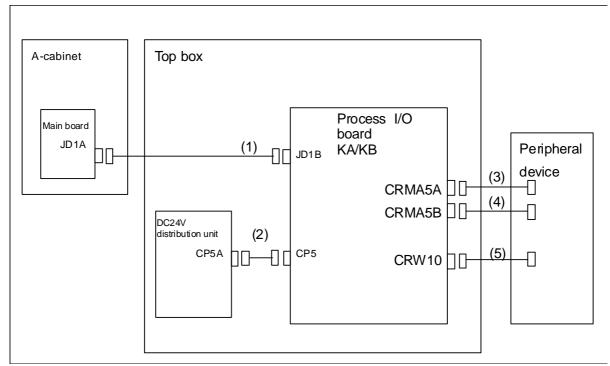


Fig.4.1.4 Block diagram of the process I/O board KA/KB

Integrated type

	intogratoa typo					
Number	Name	Drawing number	Remarks			
(1)	I/O Link cable	A05B-2601-H180				
(2)	Process I/O cable					
(3)	Peripheral device connection cable	A05B-2601-J230	Connection length of 10 m (one)			
(4)		A05B-2601-J231	Connection length of 20 m (one)			
		A05B-2601-J232	Connection length of 30 m (one)			
(5)	Welding machine connection cable	A05B-2601-J235	Connection length of 3 m (one), CRW10			
	(For process I/O board KA, KB)	A05B-2601-J236	Connection length of 7 m (one), CRW10			
	(FANUC interface/elbow type)	A05B-2601-J237	Connection length of 14 m (one), CRW10			

4.1.5 When I/O Unit-MODEL A is Used

4.1.5.1 In case of A-cabinet

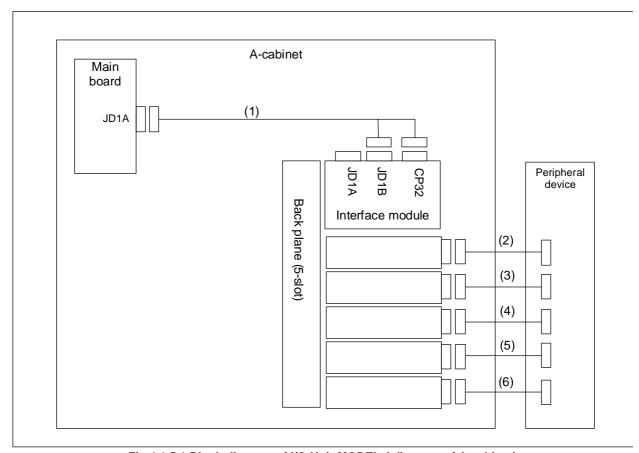


Fig.4.1.5.1 Block diagram of I/O Unit-MODEL A (In case of A-cabinet)

Number	Name	Drawing number	Remarks
(1)	I/O Link cable	-	Included in (A05B-2601-J130)
(2)-(6)	Peripheral device cable	-	Must be supplied by the customer.

4.1.5.2 In case of B-cabinet

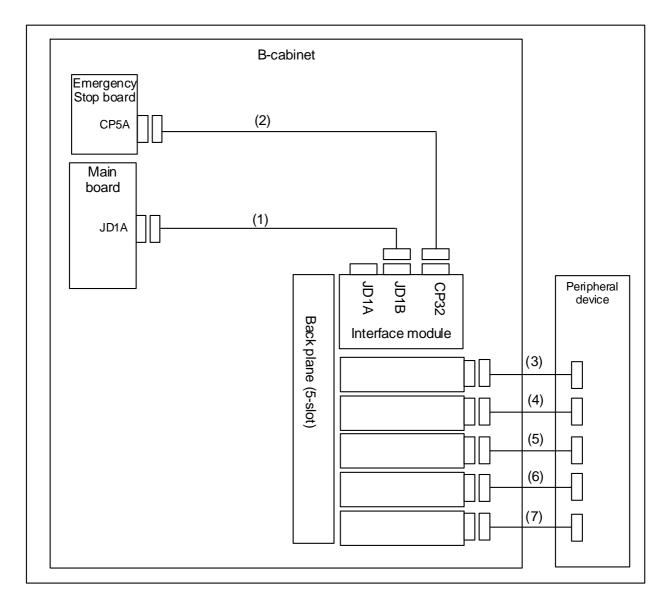


Fig.4.1.5.2 Block diagram of I/O Unit-MODEL A (In case of B-cabinet)

Number	Name	Drawing number	Remarks
(1)	I/O Link cable	-	Included in (A05B-2603-J130)
(2)	Power supply cable	-	Included in (A05B-2603-J130)
(3)-(7)	Peripheral device cable	-	Must be supplied by the customer.

4.1.6 When Two or more Process I/O Board and I/O Unit-MODEL A are Used

4.1.6.1 In case of B-cabinet

When several units of the process I/O PCB, I/O Unit-A are used, connect them as shown below.

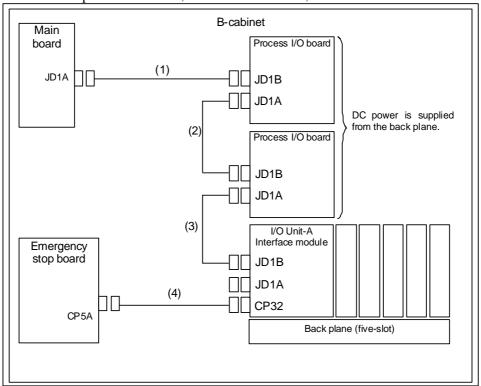


Fig.4.1.6.1 Block diagram of two or more process I/O printed circuit boards and I/O unit-MODEL A (In case of B-cabinet)

Number	Name	Drawing number	Remarks
(1)	I/O Link cable	A05B-2603-J170	Between main board and process I/O
(2)	I/O Link cable	A05B-2603-J171	Between process I/O and process I/O
(3)	I/O Link cable	-	Included in (A05B-2603-J130)
(4)	Power supply cable	-	Included in (A05B-2603-J130)

4.2 PROCESS I/O BOARD SIGNALS

There are 18 exclusive data inputs (DI) and 20 exclusive data outputs (DO) for a process I/O board. These signals are allocated to the process I/O board connected first when two or more printed boards are combined. (General signals DI/DO are allocated to the second and the following process I/O boards.) The common voltage of the DI signals input to pins 1 to 4 of connector CRMA5A is clamped +24 V (common) in each process I/O board.

Table 4.2(a)(b) shows signals of a process I/O board.

Table 4.2(a) Process I/O board signals(DI signal)

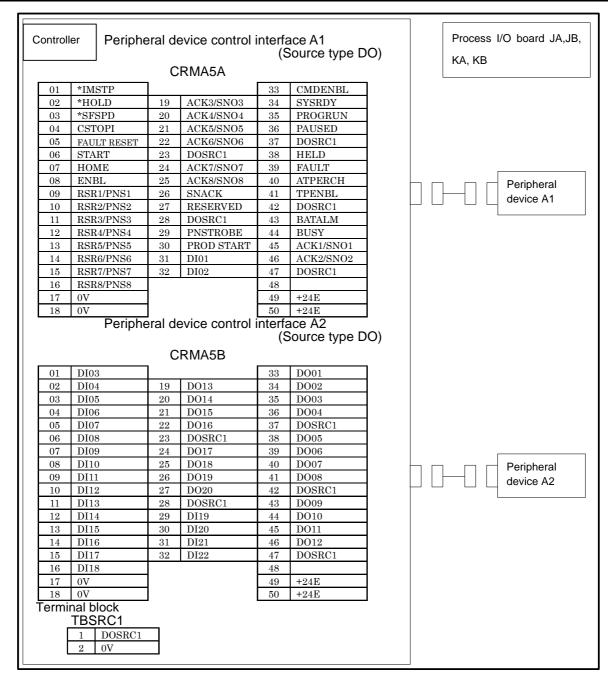
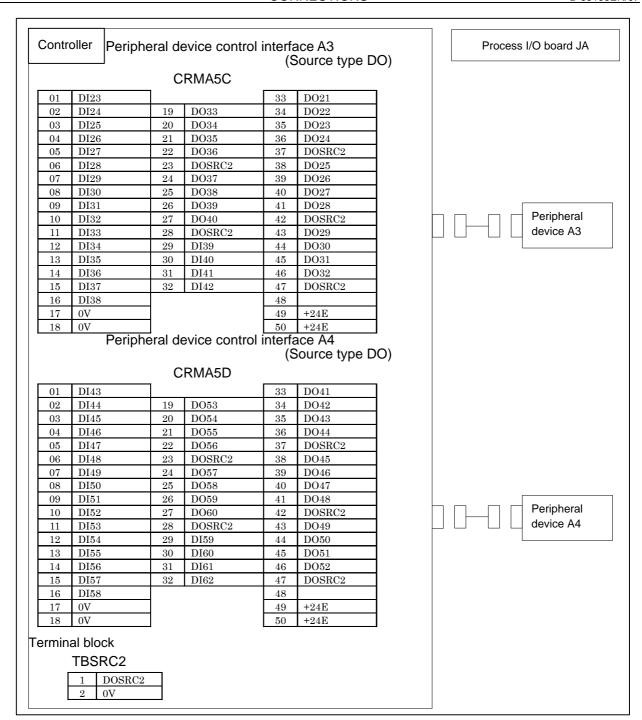
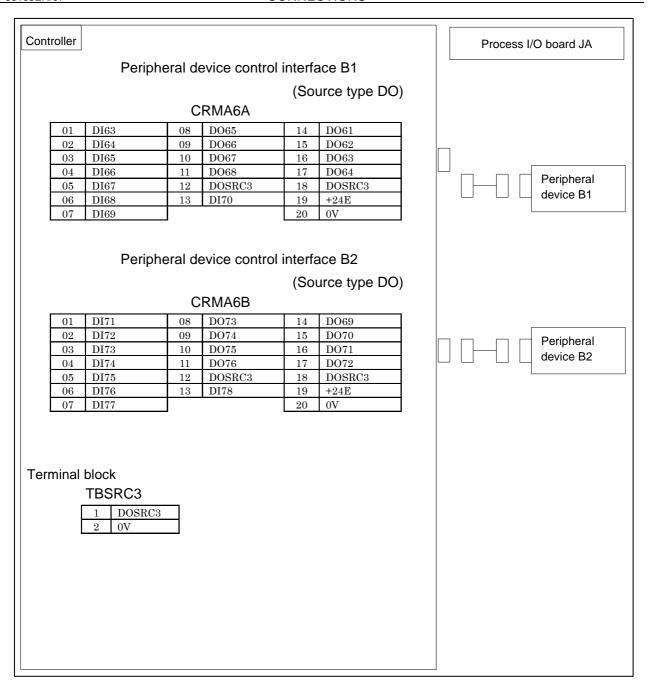
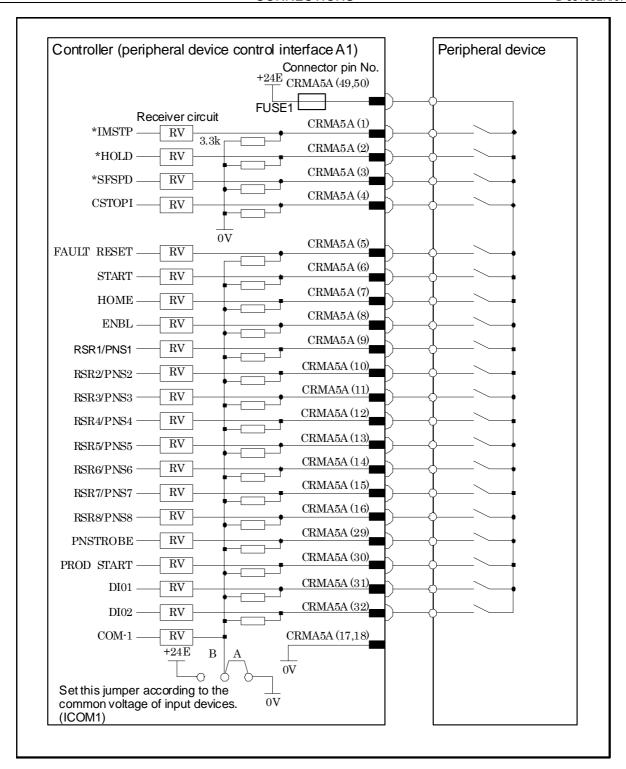

Connector	Table 4.2(a) Process I/O board signals(DI signal)					
number	Signal name	Description	Remarks			
DI signals						
CRMA5A- 1	XIMSTP	Immediate stop	Clamped at +24 V common			
CRMA5A- 2	XHOLD	Temporary stop	Clamped at +24 V common			
CRMA5A- 3	XSFSD	Safe speed	Clamped at +24 V common			
CRMA5A- 4	CSTOPI	Cycle stop	Clamped at +24 V common			
CRMA5A- 5	FAULT RESET	External reset	·			
CRMA5A- 6	START	Start				
CRMA5A- 7	HOME	Return to home position				
CRMA5A- 8	ENBL	Operation enabled				
	RSR1	Robot service request				
CRMA5A- 9	PNS1	Program number selection	Option			
	RSR2	Robot service request				
CRMA5A-10	PNS2	Program number selection	Option			
	RSR3	Robot service request				
CRMA5A-11	PNS3	Program number selection	Option			
	RSR4	Robot service request				
CRMA5A-12	PNS4	Program number selection	Option			
	RSR5	Robot service request	Option			
CRMA5A-13	PNS5	Program number selection	Option			
	RSR6	Robot service request	Option			
CRMA5A-14	PNS6	Program number selection	Option			
	RSR7	Robot service request	Option			
CRMA5A-15	PNS7	Program number selection	Option			
	RSR8	Robot service request	Option			
CRMA5A-16	PNS8	Program number selection	Option			
CRMA5A-29	PNSTROBE	PNS strobe	Option			
CRMA5A-30	PROD START	Start of automatic operation				
CRMA5A-31	DI01	•	Conoral signal			
CRMA5A-32	DI02	Peripheral device status Peripheral device status	General signal General signal			
CRMA5B- 1	DI02	 	General signal			
CRMA5B- 2	DI03	Peripheral device status Peripheral device status	<u> </u>			
		<u> </u>	General signal			
CRMA5B- 3	DI05	Peripheral device status	General signal			
CRMA5B- 4	DI06	Peripheral device status	General signal			
CRMA5B- 5	DI07	Peripheral device status	General signal			
CRMA5B- 6	DI08	Peripheral device status	General signal			
CRMA5B- 7	DI09	Peripheral device status	General signal			
CRMA5B- 8	DI10	Peripheral device status	General signal			
CRMA5B- 9	DI11	Peripheral device status	General signal			
CRMA5B-10	DI12	Peripheral device status	General signal			
CRMA5B-11	DI13	Peripheral device status	General signal			
CRMA5B-12	DI14	Peripheral device status	General signal			
CRMA5B-13	DI15	Peripheral device status	General signal			
CRMA5B-14	DI16	Peripheral device status	General signal			
CRMA5B-15	DI17	Peripheral device status	General signal			
CRMA5B-16	DI18	Peripheral device status	General signal			
CRMA5B-29	DI19	Peripheral device status	General signal			
CRMA5B-30	DI20	Peripheral device status	General signal			
CRMA5B-31	DI21	Peripheral device status	General signal			
CRMA5B-32	DI22	Peripheral device status	General signal			

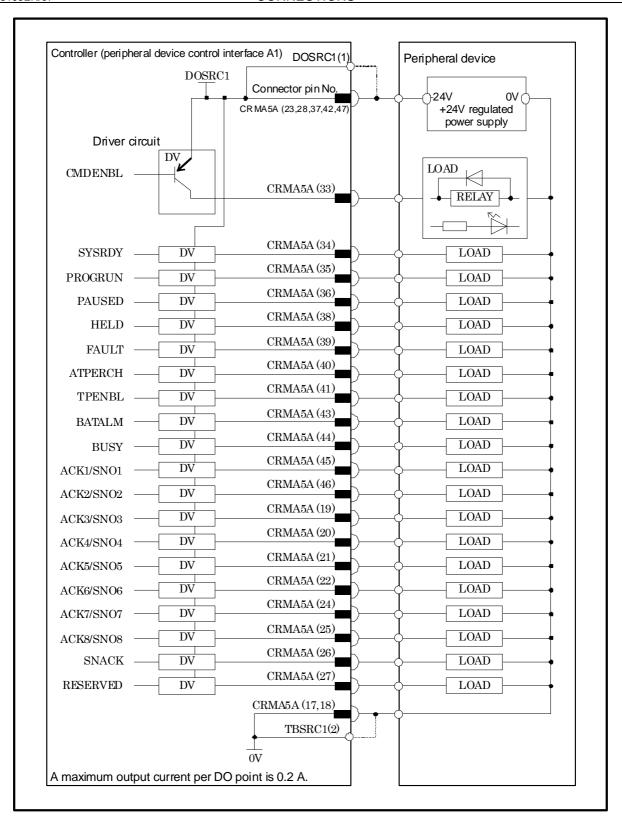
Table 4.2(b) Process I/O board signals(DO signal)

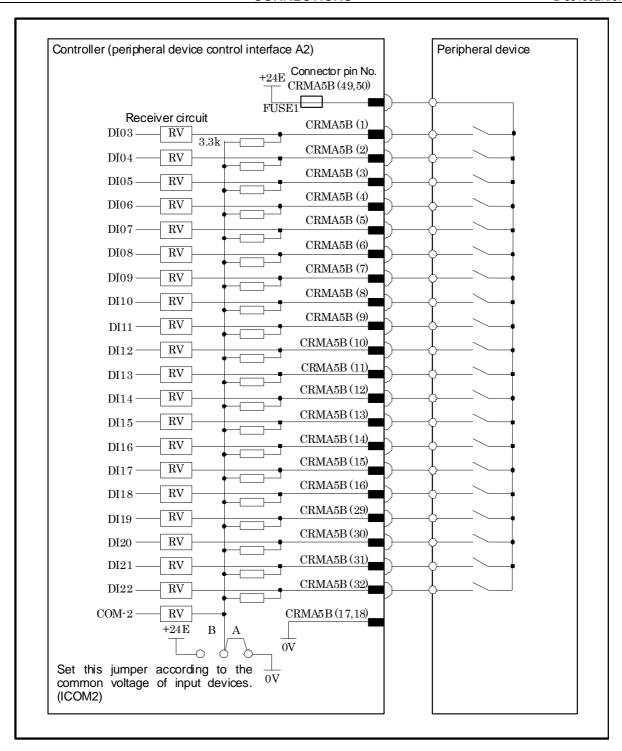

Connector		4.2(b) Process I/O board signals(DO	
number	Signal name	Description	Remarks
DO signals			
CRMA5A-33	CMDENBL	During automatic operation	
CRMA5A-34	SYSRDY	Preparation completed	
CRMA5A-35	PROGRUN	Program running	
CRMA5A-36	PAUSED	Program being interrupted	
CRMA5A-38	HELD	During temporary stop	
CRMA5A-39	FAULT	Alarm	
CRMA5A-40	ATPERCH	Home position	
CRMA5A-41	TPENBL	Teach pendant enabled	
CRMA5A-43	BATALM	Battery voltage drop	
CRMA5A-44	BUSY	During operation	
CRMA5A-45	ACK1	Robot service request acceptance	
	SNO1	Selected program number	Option
CRMA5A-46	ACK2	Robot service request acceptance	
	SNO2	Selected program number	Option
CRMA5A-19	ACK3	Robot service request acceptance	
	SNO3	Selected program number	Option
CRMA5A-20	ACK4	Robot service request acceptance	
	SNO4	Selected program number	Option
CRMA5A-21	ACK5	Robot service request acceptance	
	SNO5	Selected program number	Option
CRMA5A-22	ACK6	Robot service request acceptance	
	SNO6	Selected program number	Option
CRMA5A-24	ACK7	Robot service request acceptance	
	SNO7	Selected program number	Option
CRMA5A-25	ACK8	Robot service request acceptance	- Sprion
	SNO8	Selected program number	Option
CRMA5A-26	SNACK	Response signal to PNS	- Sprion
CRMA5A-27	RESERVED	1100porios signar to 1110	
CRMA5B-33	DO01	Peripheral device control signal	General signal
CRMA5B-34	DO02	Peripheral device control signal	General signal
CRMA5B-35	DO03	Peripheral device control signal	General signal
CRMA5B-36	DO04	Peripheral device control signal	General signal
CRMA5B-38	DO05	Peripheral device control signal	General signal
CRMA5B-39	DO06	Peripheral device control signal	General signal
CRMA5B-40	DO07	Peripheral device control signal	General signal
CRMA5B-41	DO08	Peripheral device control signal	General signal
CRMA5B-43	DO09	Peripheral device control signal	General signal
CRMA5B-44	DO10	Peripheral device control signal	General signal
CRMA5B-45	DO10	Peripheral device control signal	General signal
CRMA5B-46	DO11	Peripheral device control signal	General signal
CRMA5B-19	DO12	Peripheral device control signal	General signal
CRMA5B-19	DO13	Peripheral device control signal	General signal
CRMA5B-21	DO14	Peripheral device control signal	
		-	General signal
CRMA5B-22	DO16	Peripheral device control signal	General signal
CRMA5B-24	DO17	Peripheral device control signal	General signal
CRMA5B-25	DO18	Peripheral device control signal	General signal
CRMA5B-26	DO19	Peripheral device control signal	General signal
CRMA5B-27	DO20	Peripheral device control signal	General signal

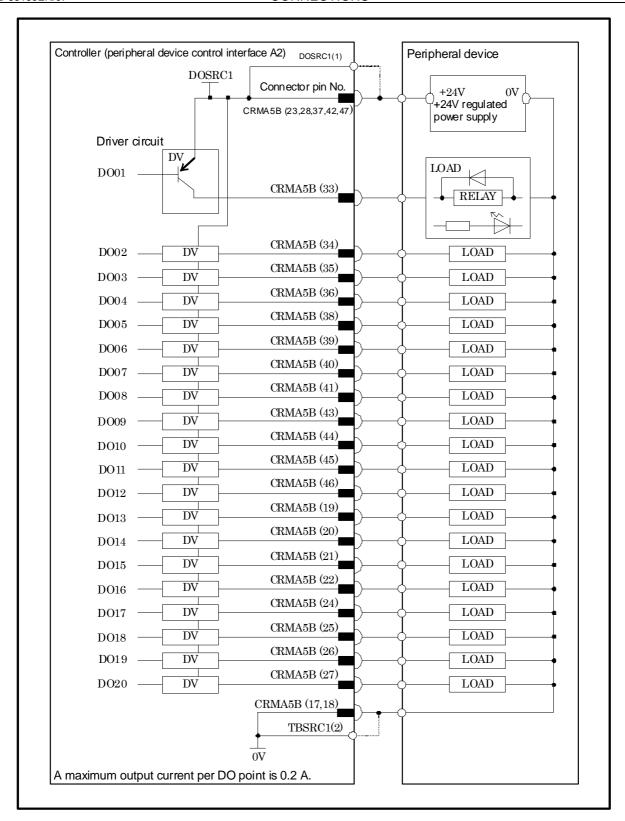
4.3 INTERFACE FOR PERIPHERAL DEVICES

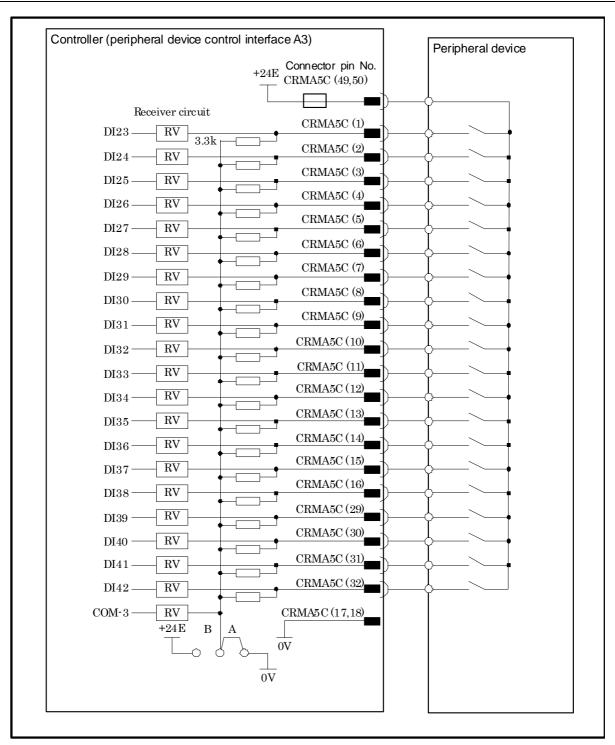

4.3.1 Peripheral Device and Controller Connection (Source Type DO)

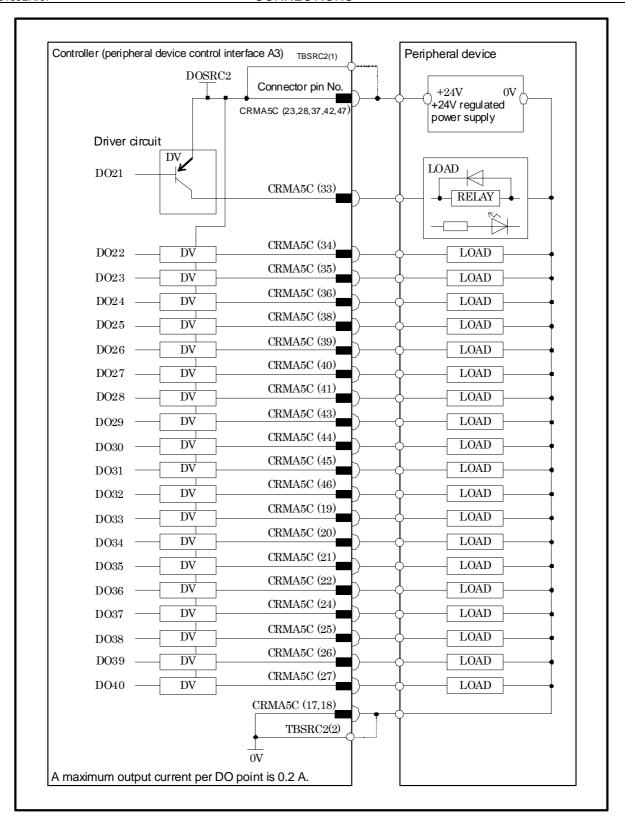

- 1 The peripheral device connection cables are optional.
- 2 The DOSRC1 pins of the CRMA5A and CRMA5B are pins for supplying power to drivers. (None of these pins can be left open.)
- 3 When the level of the voltage applied to the load is insufficient for a cause such as a too long peripheral device connection cable, supply power from the TBSRC1 terminal block.

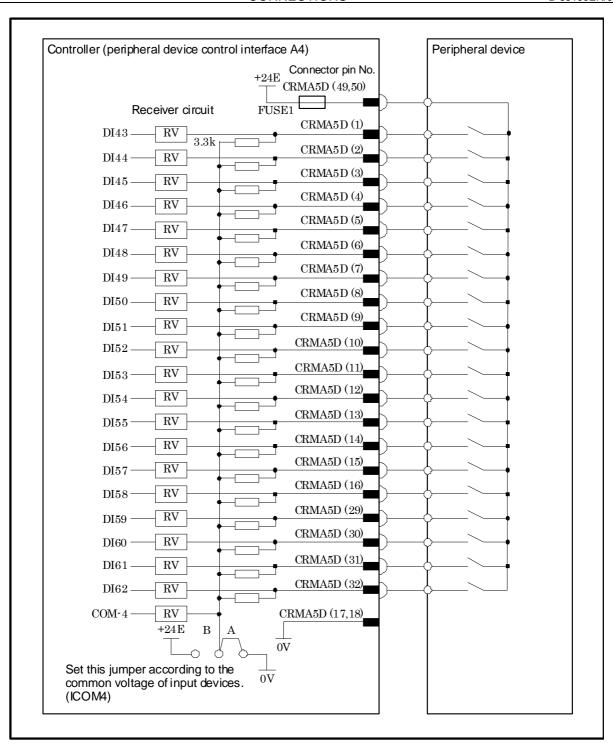


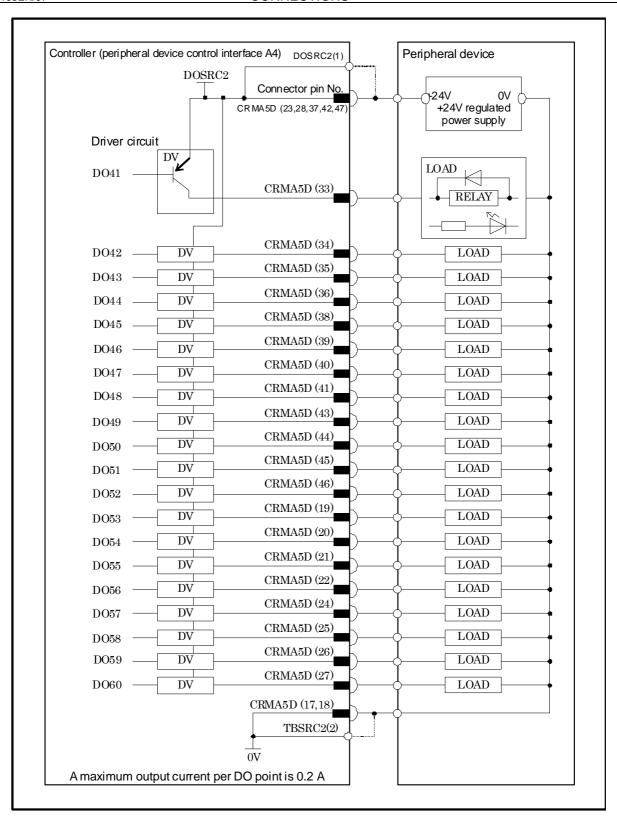

- 1 The peripheral device connection cables are optional.
- 2 The DOSRC2 pins of the CRMA5C and CRMA5D are pins for supplying power to drivers. (None of these pins can be left open.)
- 3 When the level of the voltage applied to the load is insufficient for a cause such as a too long peripheral device connection cable, supply power from the TBSRC2 terminal block.

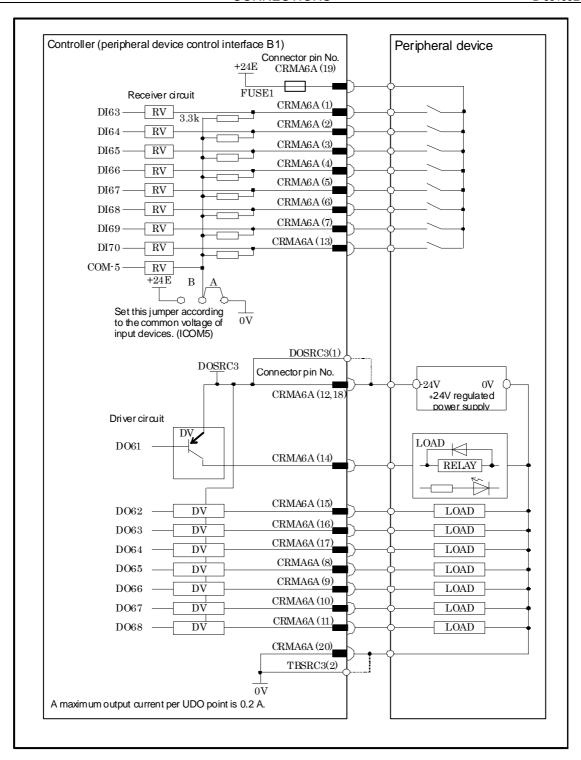


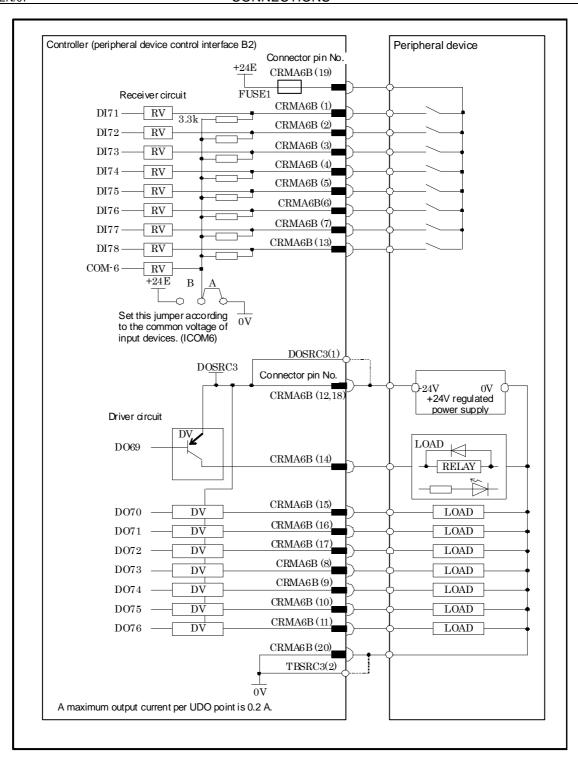

- 1 The peripheral device connection cables are optional.
- 2 The DOSRC3 pins of the CRMA6A and CRMA6B are pins for supplying power to drivers. (None of these pins can be left open.)
- 3 When the level of the voltage applied to the load is insufficient for a cause such as a too long peripheral device connection cable, supply power from the TBSRC3 terminal block.

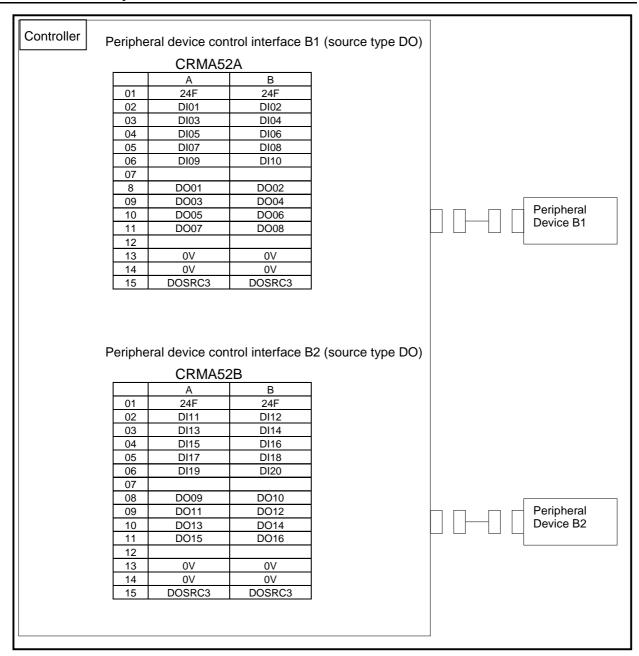


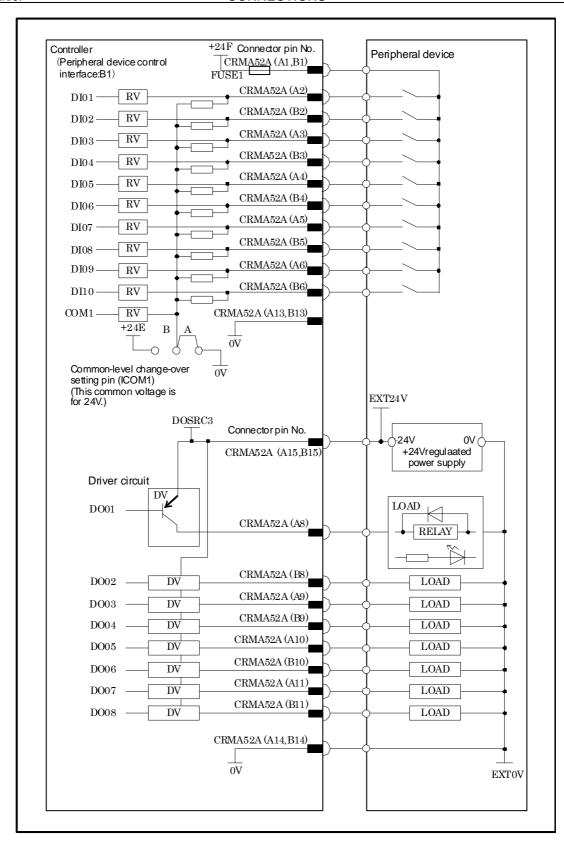


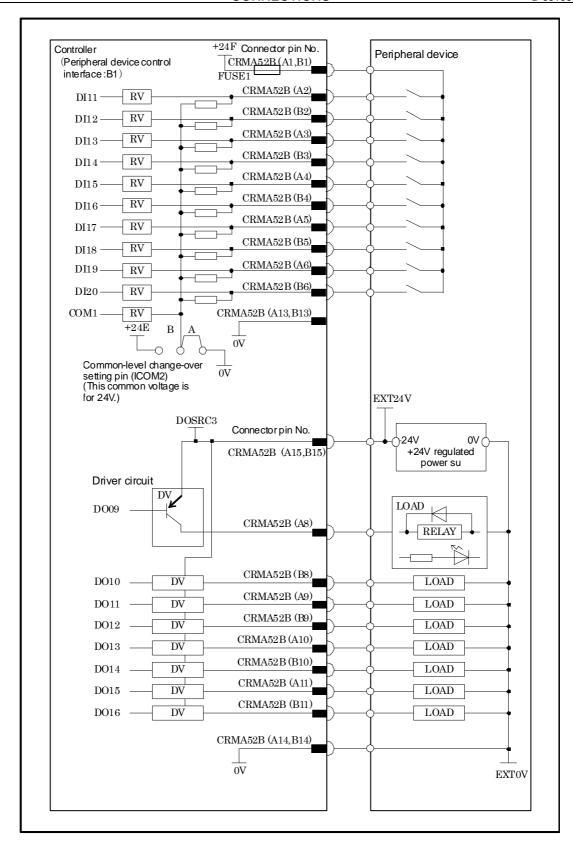




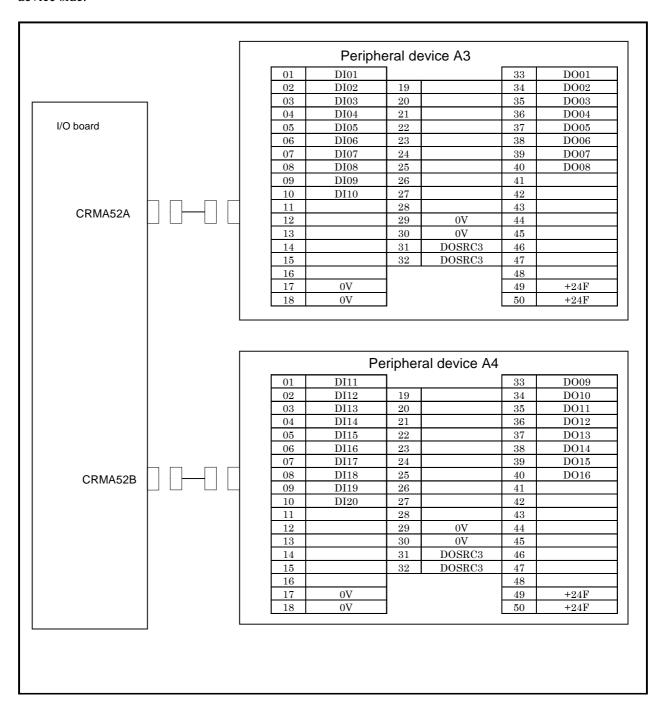






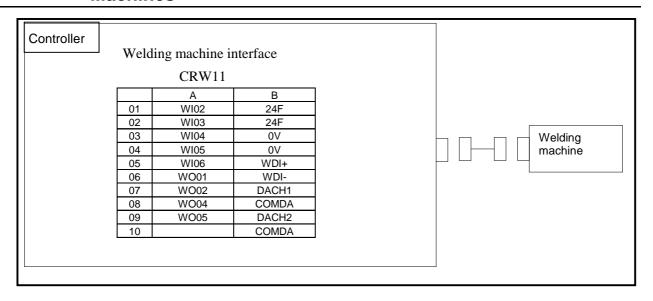


4.3.2 Connection between the Process I/O Board MA and Peripheral Devices



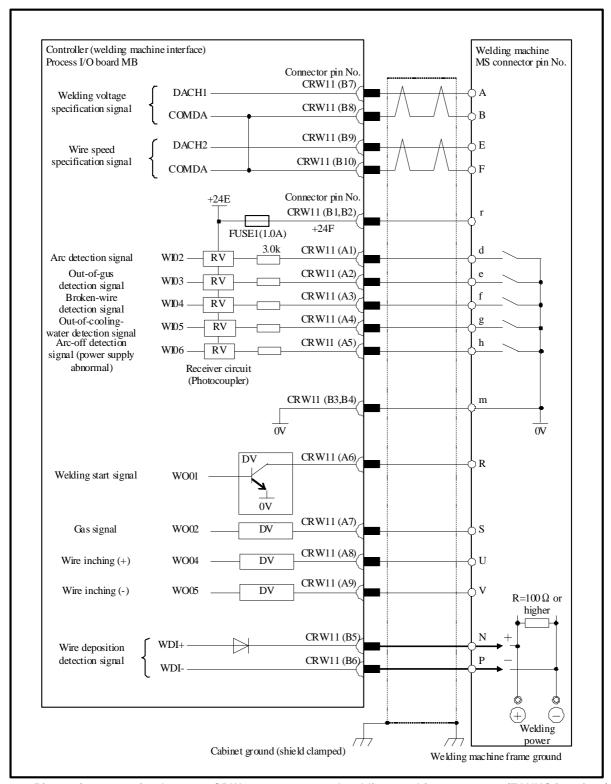
- 1 The peripheral device connection cable is optional.
- 2 The DOSRC3 pin of CRMA52A and CRMA52B supply power to the drivers (connect all pins).

The following shows the connector interface of the optional peripheral device cables on the peripheral device side



NOTE

Refer to the previous page about details of connection.

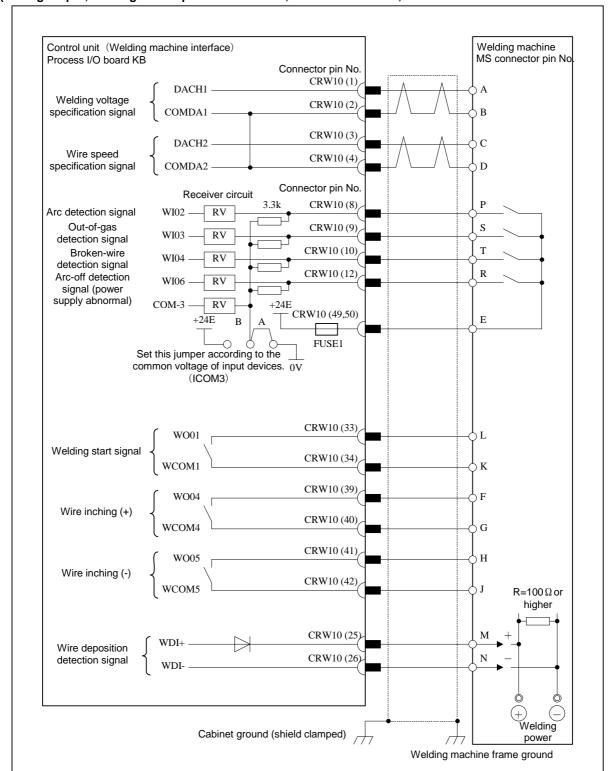

4.4 INTERFACE FOR WELDER

4.4.1 Connection between the Process I/O Board MB and Welding Machines

NOTE

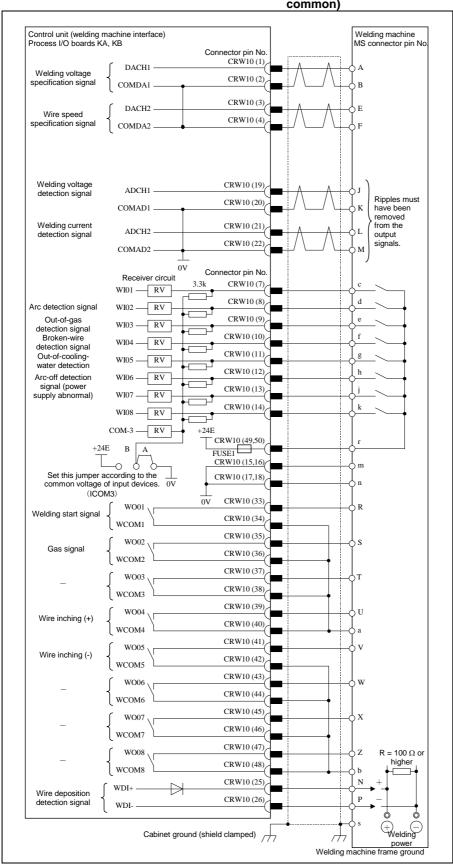
1 The welding machine connection cable is optional.

Pin-to-pin connection between CRW11 connector and welding machine connector (FANUC interface) (Analog output, welding wire deposition detection, WI/WO connection)


4.4.2 Connection between the Process I/O Board KA, KB and Welding Machines

Cont	rol unit	Weldi	ng machine	interfa	ce	
			CRW10			
01	DACH1			33	WO1	
02	COMDA1	19	ADCH1	34	WCOM1	
03	DACH2	20	COMAD1	35	WO2	
04	COMDA2	21	ADCH2	36	WCOM12	
05	DACH3	22	COMAD2	37	WO3	
06	COMDA3	23		38	WCOM3	
07	WI1	24		39	WO4	
08	WI2	25	WDI+	40	WCOM4	
09	WI3	26	WDI-	41	WO5	Welding machin
10	WI4	27		42	WCOM5	
11	WI5	28		43	WO6	
12	WI6	29		44	WCOM6	
13	WI7	30		45	WO7	
14	WI8	31		46	WCOM7	
15	0V	32		47	WO8	
16	0V			48	WCOM8	
17	0V			49	+24E	
18	0V			50	+24E	

NOTE


The welding machine connection cables are options.

Pin-to-pin connection between CRW10 connector and welding machine connector (general interface) (Analog output, welding wire deposition detection, WI/WO connection, for connections with +24 V common)

NOTE

Pin-to-pin connection between CRW10 connector and welding machine connector: FANUC interface (Analog input/output, welding wire deposition detection, WI/WO connection, for connections with +24 V common)

4.5 EE INTERFACE

4.5.1 Connection between the Mechanical Unit and End Effector

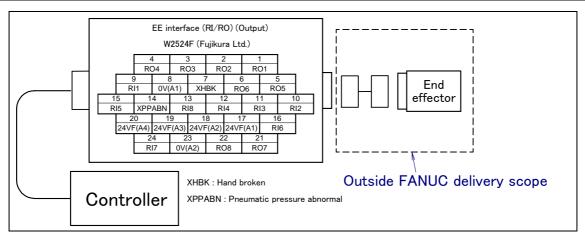
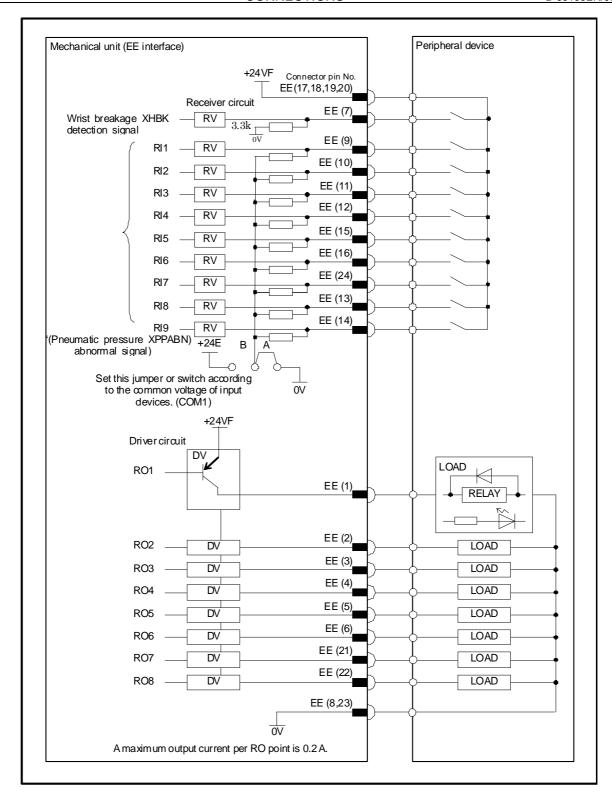
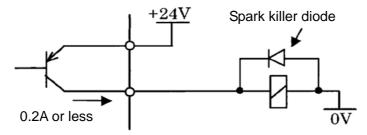



Fig.4.5.1 EE interface

NOTE

EE interface depends on the option of the robot. Refer to the operator's manual of each robot.


- 1 In this diagram, common voltage of input devices is +24V.
- 2 The common-level change-over setting pin or switch (COM1) is in the 6-axis servo amplifier.

4.6 DIGITAL I/O SIGNAL SPECIFICATIONS

This section describes the specifications of the digital I/O signals interfaced with the peripheral device, end effector, and arc welder.

4.6.1 Peripheral Device Interface A

- (1) Output signals in peripheral device interface A (Source type DO)
 - (a) Example of connection

(b) Electrical specifications

Maximum load current when driver is on: 200mA (including momentary level)

Saturation voltage when driver is on: 1.0V max.

Dielectric strength: 24V ±20% (including momentary level)

Leakage current when driver is off: 100μA

(c) The external power supply to output signals must satisfy the following:

Power supply voltage: $+24V \pm 10\%$

Power supply current: For each printed circuit board of this type

(Total sum of maximum load currents including momentary levels +

100mA or more)

Power-on timing:

At the same time when the controller is turned on or earlier

Power-off timing:

At the same time when the controller unit is turned off or later

(d) Spark killer diode

Rated peak reverse voltage: 100V or more Rated effective forward current: 1A or more

(e) Driver for output signals

In the driver device, the current of each output signal is monitored, and when an overcurrent is detected, the relevant output is turned off. After an output has been turned off by overcurrent, the overcurrent state is released because the output is off, so the output on state is restored. Therefore, in the ground fault or overcurrent state, the output is turned on and off repeatedly. Such a condition is found also when a load with a high surge current is connected.

The driver device also includes an overheat detection circuit, which turns off all outputs of the device when the internal temperature of the device has increased as a result of a continued overcurrent state due to a ground fault of an output and so on. The outputs are held off, but their normal states can be restored by turning the power to the controller on and off after the internal temperature of the device has lowered.

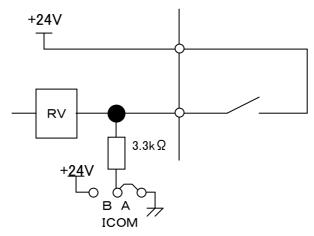
(f) Note on use

Do not use the +24V power supply of the robot.

When adding a relay, solenoid, or the like directly to the circuit, connect a diode for counter electromotive voltage protection in parallel to the load.

When using a load, such as a lamp, that generates surge current when it is turned on, install a protection resistor.

(g) Applicable signals


Output signals of process I/O board CRMA5 and CRMA6

CMDENBL, SYSRDY, PROGRUN, PAUSED, HELD, FAULT, ATPERCH, TPENBL, BATALM, BUSY,

ACK1 to ACK8, SNO1 to SNO8, SNACK, DO1 to DO76

(2) Input signals in peripheral device interface A

(a) Example of connection

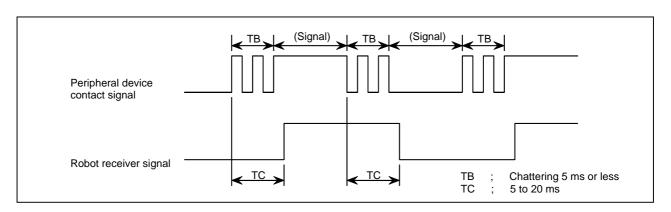
(b) Electrical specifications of the receiver

Type: Grounded voltage receiver Rated input voltage: Contact close: +20V to +28V

Contact open: 0V to +4V

Maximum applied input voltage: +28VDC

Input impedance: $3.3k \Omega$ (approx.) Response time: 5ms to 20ms


(c) Specifications of the peripheral device contact

Voltage and Current: DC24V, 0.1A

(Use a contact which minimum load is 5mA or less.)

Input signal width: 200ms or more (on/off)

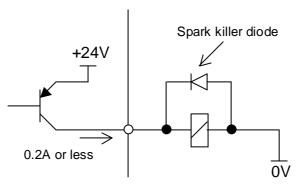
Chattering time: 5ms or less Closed circuit resistance: 100Ω or less Opened circuit resistance: $100k \Omega$ or more

(d) Note on use

Apply the +24 V power at the robot to the receiver.

However, the above signal specifications must be satisfied at the robot receiver.

(e) Applicable signals


Input signals of process I/O board CRMA5 and CRMA6

XIMSTP, XHOLD, XSFSD, CSTOPI, FAULT RESET, START, HOME, ENBL, RSR1 to RSR8, PNSTROBE, PROD START, DI1 to DI78

4.6.2 EE Interface

(1) Output signals in EE interface

(a) Example of connection

(b) Electrical specifications

Maximum load current when driver is on: 200mA (including momentary level)

Saturation voltage when driver is on: 1.0V max.

Dielectric strength: 24V ±20% (including momentary level)

Leakage current when driver is off: 100μA

(c) Power supply to output signals

The +24V power supply on the robot side can be used if the total current level, including the current of the welding interface, is 0.7A or less.

(d) Driver for output signals

In the driver device, the current of each output signal is monitored, and when an overcurrent is detected, the relevant output is turned off. After an output has been turned off by overcurrent, the overcurrent state is released because the output is off, so the output on state is restored. Therefore, in the ground fault or overcurrent state, the output is turned on and off repeatedly. Such a condition is found also when a load with a high surge current is connected.

The driver device also includes an overheat detection circuit, which turns off all outputs of the device when the internal temperature of the device has increased as a result of a continued overcurrent state due to a ground fault of an output and so on. The outputs are held off, but their normal states can be restored by turning the power to the controller on and off after the internal temperature of the device has lowered.

(e) Note on use

When adding a relay, solenoid, or the like directly to the circuit, connect a diode for counter electromotive voltage protection in parallel to the load.

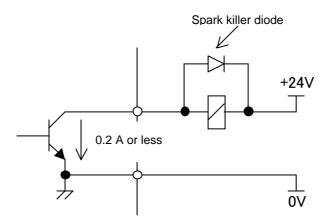
When using a load, such as a lamp, that generates surge current when it is turned on, install a protection resistor.

(f) Applicable signals

CONNECTIONS

B-83195EN/07

RO1 to RO8


(2) Input signal in peripheral device interface

The input signals are the same as those of other I/O boards. (Refer to Subsection 4.5.1 in CONNECTIONS.)

(a) Applicable signals RI1 to RI8, XHBK, XPPABN

4.6.3 I/O Signal Specifications for ARC-Welding Interface (A-cabinet/Process I/O Board MB)

- (1) Specification for arc welding machine interface digital output signals
 - (a) Example of connection

(b) Electrical specifications

Rated voltage: 24VDC Maximum applicable voltage: 30VDC

Maximum load current: 200mA (including momentary level)

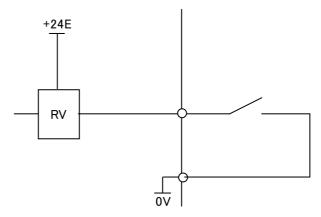
Transistor type: Open-collector NPN Saturation voltage when the circuit is on: Approximately 1.0V

(c) Spark killer diode

Rated peak-to-peak reverse withstand voltage: 100V or higher Rated effective forward current: 1A or more

(d) Caution for use

The arc welding machine interface can use the +24V power supply of the robot unless the sum of its sink current and that of the EE interface exceeds 0.7A. When using a relay or solenoid directly as a load, connect the load and a back electromotive force voltage prevention diode in parallel.


When using a load, such as a lamp, that generates surge current when it is turned on, install a protection resistor.

(e) Applicable signals

Arc welding machine interface output signals

[WO1, 2,4,5]

- (2) Specification for arc welding machine interface digital output signals
 - (a) Example of connection

(b) Electrical specifications of the receiver

Type: Grounded voltage receiver

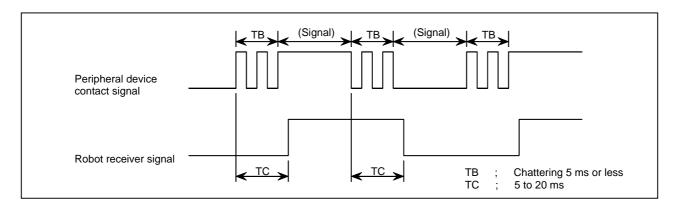
Rated input voltage: Contact close +20V to +28V

Contact open 0V to +4V

 $\begin{array}{ll} \mbox{Maximum applied input voltage:} & +28\mbox{VDC} \\ \mbox{Input impedance:} & 3.0\mbox{k}\,\Omega\,\mbox{(approx.)} \\ \mbox{Response time:} & 5\mbox{ms to }20\mbox{ms} \end{array}$

(c) Specifications of the peripheral device contact

Voltage and Current: DC24V, 0.1A


(Use a contact which minimum load is 5mA less.)

Input signal width: 200ms or more (on/off)

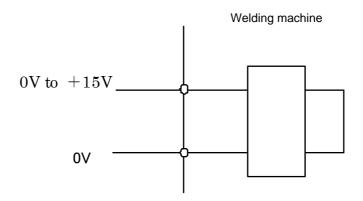
Chattering time: 5ms or less

Closed circuit resistance: 100Ω or less

Opened circuit resistance: $100k \Omega$ or more

(d) Note on use

Apply the +24 V power at the robot to the receiver.

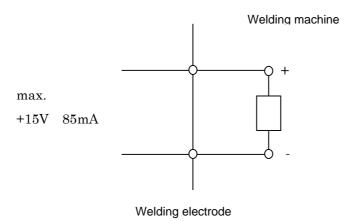

However, the above signal specifications must be satisfied at the robot receiver.

(e) Applicable signals

Arc welding machine interface input signals

[WI2 to 6]

- (3) Specification for arc welding machine interface analog output signals (welding voltage and wire feed specification signals)
 - (a) Example of connection



(b) Caution for use

Input impedance: $3.3k\Omega$ or higher Install a high-frequency filter.

(Wire deposit detection: WDI+ and WDI-)

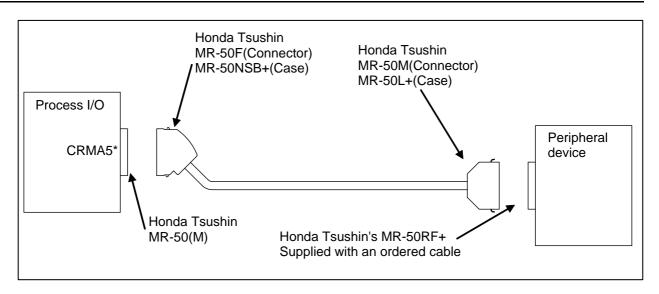
(a) Example of connection

(Wire deposition detection: WDI+, WDI-)

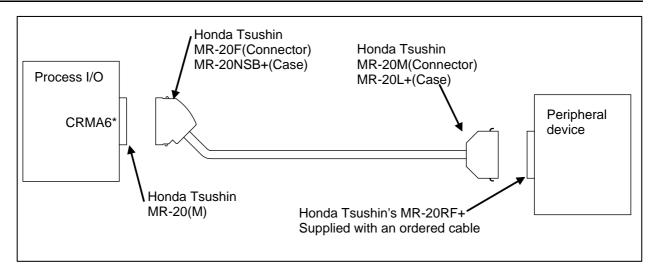
(b) Caution for use

The resistance between the ${\scriptscriptstyle +}$ and ${\scriptscriptstyle -}$ terminals of the welding machine must be 100 Ω or higher.

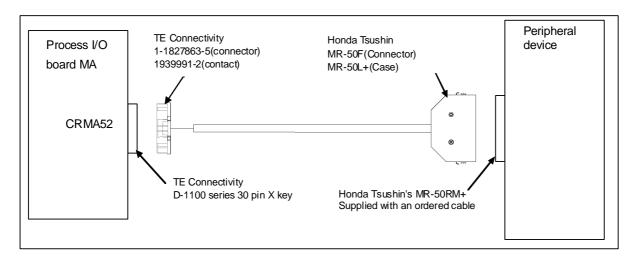
The TIG welding deposition detection circuit must be isolated from the welding circuit (high frequency).

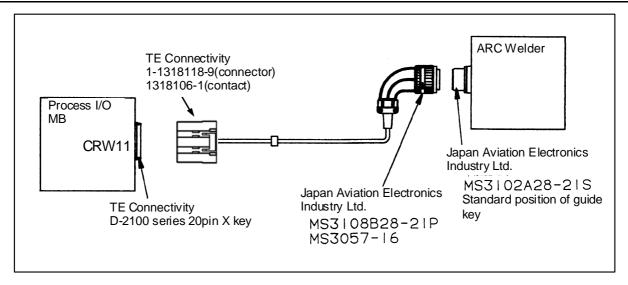

This circuit can withstand up to 80 V.

4.7 SPECIFICATIONS OF THE CABLES USED FOR PERIPHERAL DEVICES AND WELDERS

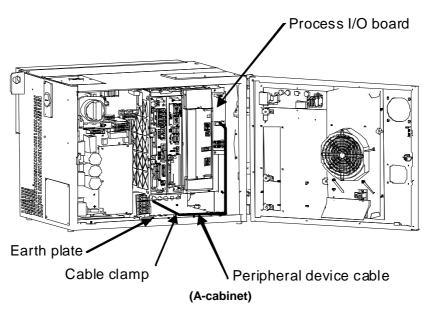

If the customer manufactures cables, make sure they conform to the FANUC standard cables described in this section.

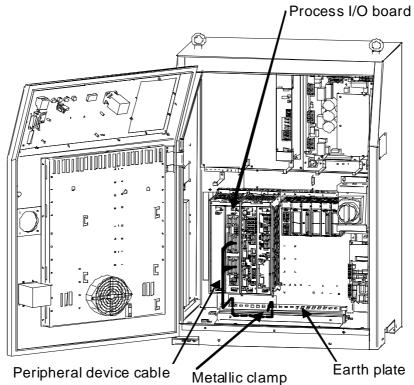
(See the description in "Peripheral Device Interface" in this manual for the specifications of the FANUC standard cables.)


4.7.1 Peripheral Device Interface A Cable (CRMA5*: Honda Tsushin, 50 pins)


4.7.2 Peripheral Device Interface B Cable (CRMA6*: Honda Tsushin, 20 pins)

4.7.3 Peripheral Device Interface B1 and B2 Cables (CRMA52; TE Connectivity 30 pin)


4.7.4 ARC Weld Connection Cables (CRW11; TE Connectivity 20 pin)



4.8 CABLE CONNECTION FOR THE PERIPHERAL DEVICES, END EFFECTORS, AND ARC WELDERS

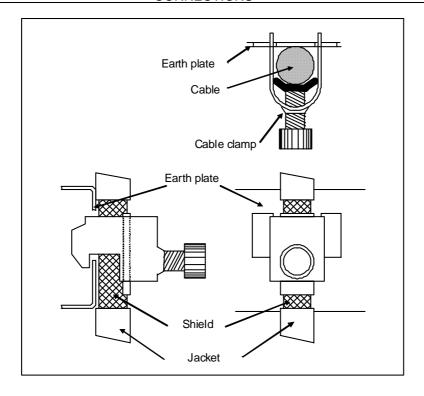
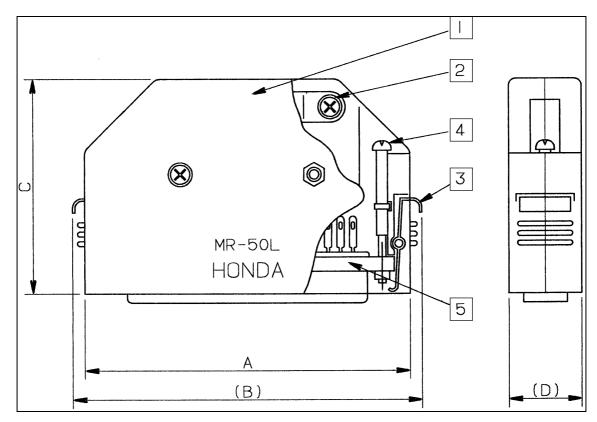

4.8.1 Peripheral Device Connection Cable

Fig.4.8.1 shows the connection of the peripheral device cable in the cabinet.

(B-cabinet)

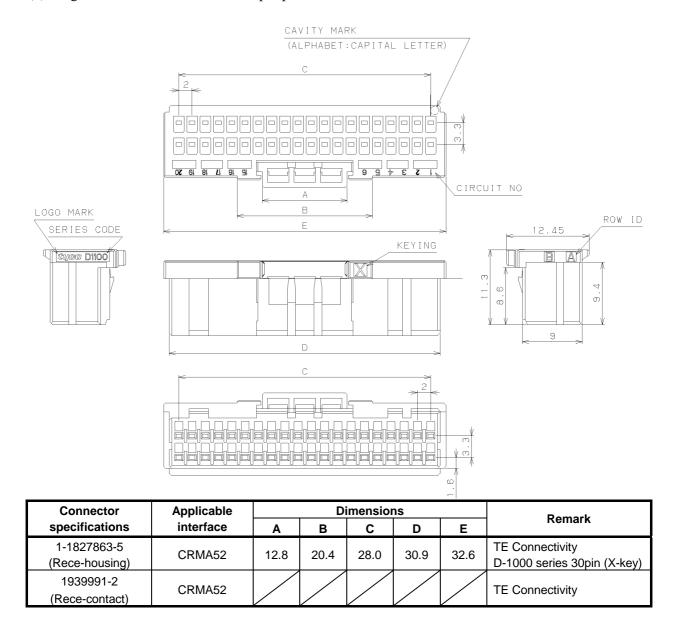


For protection against the noise, cut part of the jacket of the connection cable to expose the shield, and fasten this part to the earth plate with the cable clamp.

Fig.4.8.1 Peripheral Device Cable Connection

4.8.2 Peripheral Device Cable Connector

(1) Fig.4.8.2 shows the connector for peripheral device cables A and B.

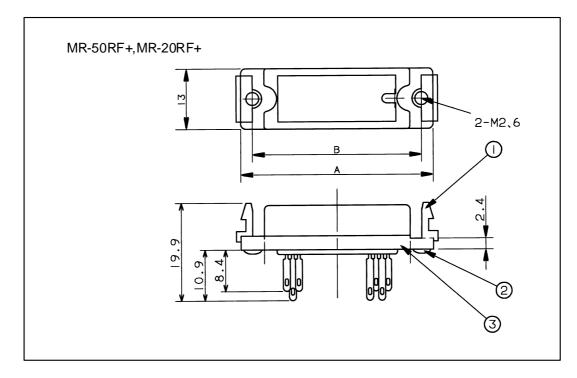


Connector	Applicable		Dime	nsions		Remark	
specifications	interface	Α	(B)	С	(D)		
MR-50F(Connector)	CRMA5	67.9	73.5	44.8	18	Honda Tsushin Kogyo, 50 pins	
MR-50L+(Case)						Female, Solder type	
MR-20F(Connector)	CRMA6	39.3	44.9	39.8	17	Honda Tsushin Kogyo, 20 pins	
MR-20L+(Case)						Female, Solder type	

Symbol	Name					
1	Connector cover					
2	Cable clamp screw					
3	Connector clamp spring					
4	Connector clamp screw					
5	Connector					

Fig.4.8.2 (a) Peripheral device cable connector

(1) Fig.4.8.2 shows the connector for peripheral device cables A1 and A2.

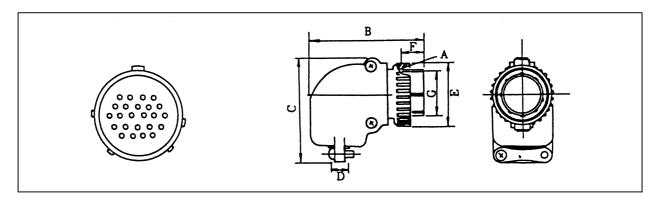


Maintenance tool

Hand tool (for crimping contact) 2119141-1:A05B-2550-K064 Extraction tool 1891526-1:A05B-2550-K061

Fig.4.8.2 (b) Peripheral device cable connector

(2) Peripheral device connector


Connector	Applicable	Dimensions		Remark
specifications		Α	В	
MR-50RF+	Peripheral device			Honda Tsushin Kogyo, 50 pins Female, Solder type
MR-20RF+	Peripheral device	39.3 44.9		Honda Tsushin Kogyo, 20 pins Female, Solder type

Symbol	Name
(1)	Connector clamp screw
(2)	Screw M2.6 x 8
(3)	Connector

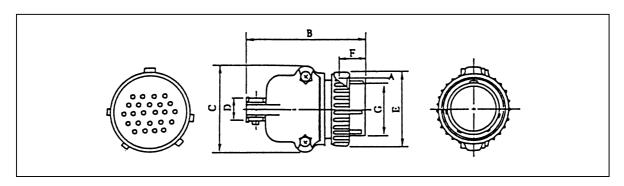
Fig.4.8.2 (c) Peripheral device connector

4.8.3 End Effector Cable Connector (EE interface)

(1) Connector external view (Example: For R-2000*i*B, M-710*i*C)

A: M30 x 1

B: 63.0


C: 54.5

D: 9.6 to 15.0 (Inside diameter)

E: \$\phi 33\$
F: 11.2
G: 24.7

Manufactured by Fujikura JMLP2524M

Fig.4.8.3 (a) Connector (Elbow Type)

A: M30 x 1

B: 54.1

C: 37.5

D: 9.6 to 15.0 (Inside diameter)

E: \$\phi 33\$
F: \$11.2\$
G: \$24.7\$

Manufactured by Fujikura JMLP2524M

Fig.4.8.3 (b) Connector (Straight Type)

NOTE

EE interface depends on the option of the robot. Refer to the operator's manual of each robot.

4.8.4 Recommended Cables

(1) Peripheral device connection cable

Connect a peripheral device using a completely shielded, heavily protected cable conforming to the specifications in Table 4.8.4 (a).

Allow an extra 50 cm for routing the cable in the controller.

The maximum cable length is 30 m.

Table 4.8.4 (a) Recommended Cable (for Peripheral Device Connection)

	Wire specifications	Co	onductor	Sheath	Effective	Electrical ch	aracteristics
Number of wires	·	Diameter (mm)	Configuration	thicknes	outside diameter (mm)		Allowable current (A)
50	A66L-0001-0042	φ1.05	7/0.18 AWG24	1.5	φ12.5	106	1.6A
20	A66L-0001-0041	φ1.05	7/0.18 AWG24	1.5	φ10.5	106	1.6A

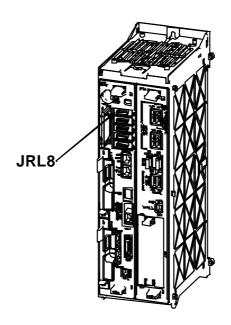
(2) End effector connection cable

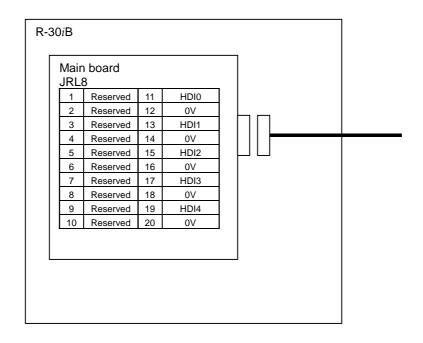
Connect an end effector using a heavily protected cable with a movable wire conforming to the specifications in Table 4.8.4 (b).

The cable length is determined so that the cable will not interfere with the end effector and the wrist can move through its full stroke.

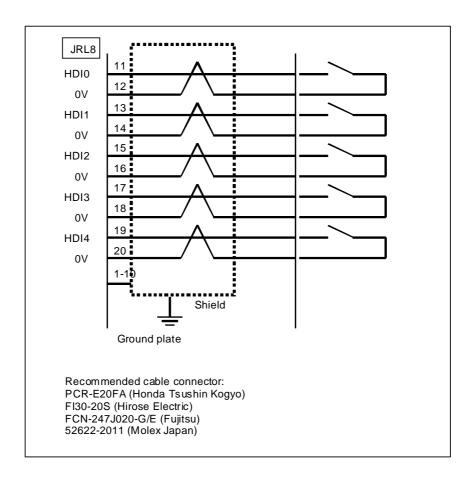
Table 4.8.4 (b) Recommended Cable (for End Effector Connection)

	Wire specifications	Conductor		Sheath	Effective	Electrical characteristics	
Number of wires	· <u>·</u>	Diameter (mm)	Configuration	thicknes	outside diameter (mm)		Allowable current (A)
6	A66L-0001-0143	φ1.1	40/0.08 AWG24	1.0	φ5.3	91	3.7
20	A66L-0001-0144	φ1.1	40/0.08 AWG24	1.0	φ8.6	91	2.3
24	A66L-0001-0459	ф0.58	40/0.08 AWG24	1.0	φ8.3	93	2.3


NOTE

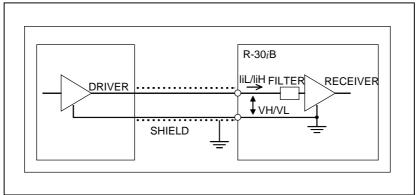

For protection against the noise, cut part of the jacket of the connection cable to expose the shield, and fasten this part to the earth plate with the cable clamp.

4.9 CONNECTION OF HDI


4.9.1 Connecting HDI

The HDI signals are used in combination with special application software. The HDI signals cannot be used as general-purpose DIs.

Cable connections



NOTE

- 1 Pair each signal with 0V.
- 2 For protection against the noise, cut part of the jacket of the connection cableto expose the shield, and fasten this part to the earth plate with the cable clamp.

4.9.2 Input Signal Rules for the High-speed Skip (HDI)

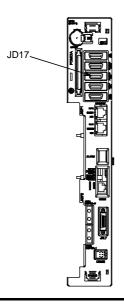
Circuit configuration

Absolute maximum rating

Input voltage range Vin: -3.6 to +10 V

Input characteristics

Unit	Symbol	Specification	Unit	Remark
High level input voltage	VH	3.6 to 11.6	V	
Low level input voltage	VL	0 to 1.0	V	
High level input current	liH	2 max	mA	Vin=5 V
		11 max	mA	Vin = 10 V
Low level input current	liL	-8.0 max	mA	Vin = 0 V
Input signal pulse duration		20 min	μS	
Input signal delay or variations		20 max	μS	


NOTE

- 1 The plus (+) sign of liH/liL represents the direction of flow into the receiver. The minus (-) sign of liH/liL represents the direction of flow out of the receiver.
- 2 The high-speed skip signal is assumed to be 1 when the input voltage is at the low level and 0 when it is at the high level.

4.10 CONNECTING THE COMMUNICATION UNIT

4.10.1 RS-232-C Interface

4.10.1.1 Interface

JD1	7		
1	RD	11	SD
2	SG	12	SG
3	DR	13	ER
4	SG	14	SG
5	CS	15	RS
6	SG	16	SG
7		17	
8		18	
9		19	+24V
10	+24V	20	

Honda Tsushin Kogyo

CONNECTOR: PCR-E20FS

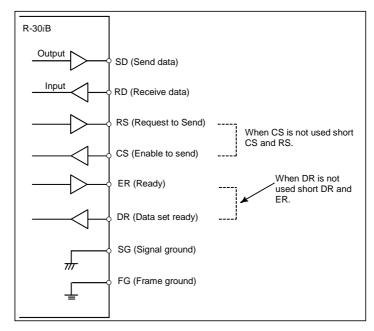
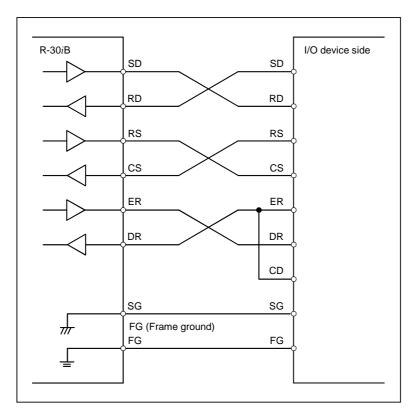
COVER: PCR-V20LA, or compatible connector

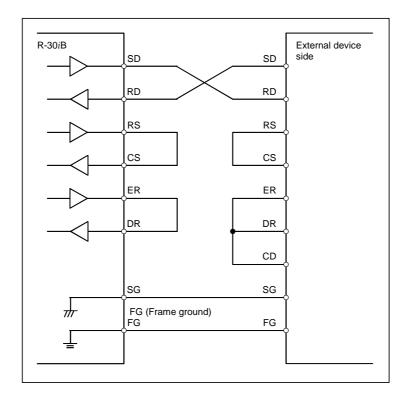
NOTE

- 1 +24 V can be used as the power supply for FANUC RS-232-C equipment.
- 2 Do not connect anything to those pins for which signal names are not indicated.

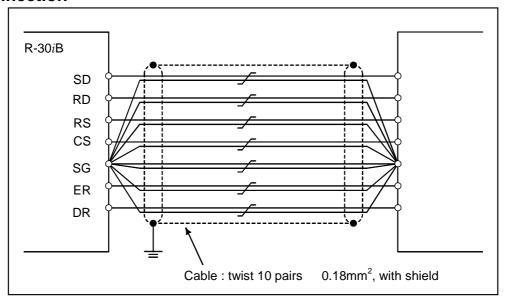
4.10.1.2 RS-232-C interface signals

Generally signals as follows are used in RS-232-C interface.


Fig.4.10.1.2 RS-232-C interface

4.10.1.3 Connection between RS-232-C interface and I/O device


The figure below shows a connection with the handshaking of the ER/DR, RS/CS signals.

• The figure below shows a connection without the handshaking of the RS/CS, ER/DR signals.

Cable connection

NOTE

- 1 Pair each signal with SG.
- 2 For protection against the noise, cut part of the jacket of the connection cableto expose the shield, and fasten this part to the earth plate with the cable clamp.

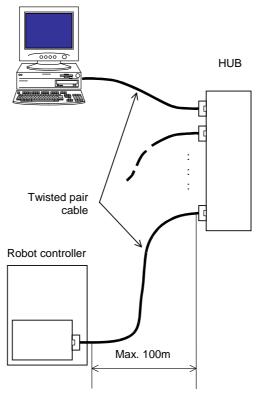
4.10.2 Ethernet Interface

This section describes information relating to the physical Ethernet connection.

! CAUTION

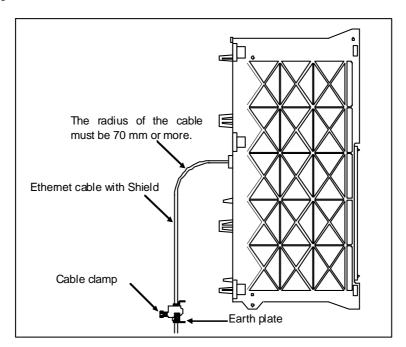
- 1 Before connecting or disconnecting the Ethernet cable, make sure that the power to the robot controller is turned off.
- Please inquire of each manufacturer (of hub, transceiver, cable etc.) about the construction of network or the condition of using the equipment. When configuring your network, you must take other sources of electrical noise into consideration to prevent your network from being influenced by electrical noise. Make sure that network wiring is sufficiently separated from power lines and other sources of electrical noise such as motors, and ground each of the devices as necessary. In addition, high and insufficient ground impedance may cause interference during communications. After installing the robot, conduct a communications test before you actually start operating the robot.

We cannot ensure operation that is influenced by network trouble caused by a device other than the robot controller.


4.10.2.1 Connection to Ethernet

The robot controller is provided with a 100BASE-TX interface.

Prepare a hub for connecting the controller to the Ethernet trunk. The following shows an example of a general connection.


Some devices (hub, transceiver, etc.) that are needed for building a network do not come in a dust-proof construction. Using such devices in an atmosphere where they are subjected to dust or oil mist will

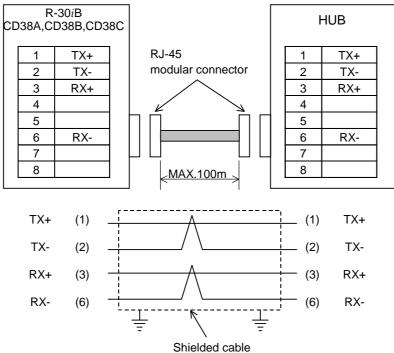
interfere with communications or damage the robot controller. Be sure to install such devices in a dust-proof cabinet.

4.10.2.2 Leading out the Ethernet Cable

For this type of controller, the cable is drawn out only from the front of the controller. See the outline drawing of each type of board for the location of the connector.

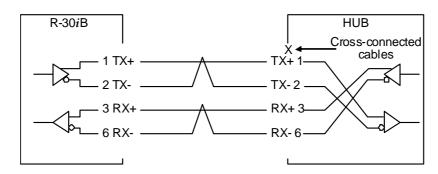
The Ethernet cable must be fastened by a cable clamp to prevent tension being applied to the modular connector (RJ-45) that connects the cable to the controller even if the Ethernet cable is pulled directly. This clamp is also used to ground the cable shield.

4.10.2.3 100BASE-TX Connector (CD38A, CD38B) Pin Assignments


CD	20/	A.CE	120	D	\sim	20	^
ω	JOL	1. C.L	JOO	о.,	$ \omega$	JOO.	_

Pin No.	Signal name	Description
1	TX+	Send +
2	TX-	Send -
3	RX+	Receive +
4		Not used
5		Not used
6	RX-	Receive -
7		Not used
8		Not used

4.10.2.4 Twisted-pair Cable Specification


Cable Connection

The cable used for connection between the 100BASE-TX interface, CD38, of the controller and the hub is connected as follows:

- Keep the total cable length within 100 m. Do not extend the cable more than is necessary.
- The figure above shows the cable connection when cables are crossed in the hub.

 "X" is usually indicated at the port of the hub to signify that cables are crossed in the hub.

Cable Materials

⚠ CAUTION

Unshielded cable (UTP cable) is commercially available as 100BASE-TX twisted-pair cable: You should, however, use shielded Category 5 twisted-pair cable (STP cable) to improve the resistance to electrical noise in an FA environment.

Recommended Cables

Manufacturer	Specification	Remarks
FURUKAWA ELECTRIC CO., LTD.	DTS5087C-4P	Twisted-pair cable
NISSEI ELECTRIC CO., LTD.	F-4PFWMF	Single-conductor cable

Inquiries

Manufact	turer	Contact address
FURUKAWA ELECTRIC CO., LTD.		2-6-1 Marunouchi, Chiyoda-ku. Tokyo 100-8322
Sales Headquarters		TEL: 03-3286-3126 FAX: 03-3286-3979
NISSEI ELECTRIC CO., LTD).	3F MU Bldg., 1-9-1 Minami-narise,
Machida Branch		Machida City, Tokyo 194-0045
		TEL: 0427-29-2531 FAX: 0427-29-3375
0	Overseas Sales Office	IWATANI International Corporation
		Tokyo Head Office
		21-8 Nishi-shinbashi 3-chome, Minato-ku, TOKYO,
		105-8458, JAPAN
		TEL: 03-5405-5810 FAX: 03-5405-5666
		Telex: 2524256 IWATYO J
R	Remarks	A finished cable with connectors at both ends can be offered.

NOTE

The recommended cables cannot be connected to moving parts.

Recommended cable (for movable parts)

Manufacturer	Specification	Remarks
Oki Electric Cable Co., Ltd.	AWG26 4P TPMC-C5-F (SB)	Dedicated to
Shinko Electric Industrial Co., Ltd.	FNC-118	FANUC

Specification

Electric characteristics:

Conforms to EIA/TIA 568A Category 3 and Category 5.

From the viewpoint of attenuation performance, ensure that the length to the hub is 50 m or less.

Structure:

Group shielded (braided shield). A drain wire is available.

The conductor is an AWG26 annealed copper twisted wire, with a sheath thickness of 0.8 mm and an outer diameter of 6.7 mm ± 0.3 mm.

Fire retardancy

UL1581 VW-1

Oil resistance

Conforms to the FANUC internal standards (equivalent to the conventional oil-resistant electric cables).

Flexing resistance:

1,000,000 times or more with a bending radius of 50 mm (U-shaped flex test)

UL style No.

AWM 20276 (80°C/30V/VW-1)

NOTE

Be sure to use the connector TM21CP-88P (03) manufactured by HIROSE ELECTRIC CO., LTD. for this cable.

Inquiries

Manufacturer	Contact address
Oki Electric Cable Co., Ltd.	Nagano Sales Office TEL:0266-27-1597
Shinko Electric Industrial Co., Ltd.	Tokyo Sales Office TEL:03-3492-0073

Cable assembly

Oki Electric Cable Co., Ltd. can also supply the cable assembly mentioned above.

Contact Oki Electric directly to determine the specifications (length, factory test, packing, and so forth) for purchase.

Connector Specification

Use an 8-pin modular connector (RJ-45) with the twisted-pair cable for the Ethernet connection. The following connectors or equivalents must be used.

Non-Flex	Specification	Manufacturer	Remarks
Solid wire	5-569530-3	TE Connectivity	
Solid wire	MS8-RSZT-EMC	SK KOHKI CO., LTD.	Special tools required
Twisted-pair cable	5-569552-3	TE Connectivity	
Twisted-pair cable	TM11AP-88P	HIROSE ELECTRIC CO., LTD.	Special tools required

Flex	Specification	Manufacturer	Remarks
For cable AWG26 4P			
TPMC-C5-F (SB)	TM21CP-88P (03)	HIROSE ELECTRIC CO., LTD.	Note
or FNC-118			

NOTE

Information about TM21CP-88P (03):

Connector (standard product of the manufacturer)

Drawing number: A63L-0001-0823#P

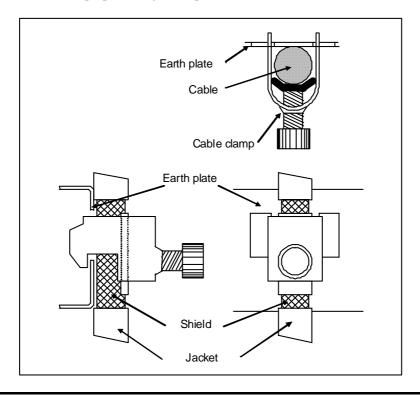
Manufacturer: HIROSE ELECTRIC CO., LTD. Manufacturer type number: TM21CP-88P (03)

Conforms to EIA/TIA 568A Category 3 and Category 5.

For assembly with a cable, contact HIROSE ELECTRIC CO., LTD. directly. (From HIROSE ELECTRIC CO., LTD., "TM21CP-88P (03) Connection

Procedure Manual (Technical Specification No. ATAD-E2367)" is available as a

technical document.)

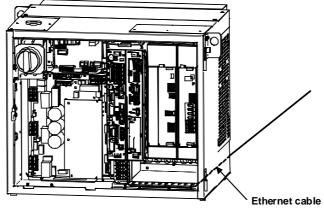

4.10.2.5 Electrical Noise Countermeasures

Clamping and Shielding Cables

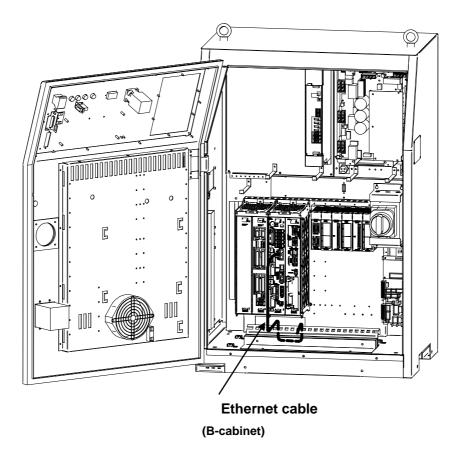
Clamp an Ethernet twisted pair cable according to the method described below, as with cables that need to be shielded. Clamping cables provides support and shielding and is extremely important to the safe operation of the system. Never overlook cable clamping.

Peel off part of the jacket as shown in the figure to expose the outer coating of the shield, and press this outer coating against the earth plate with the cable clamp.

The machine manufacturer must prepare the ground plate and install it as follows:

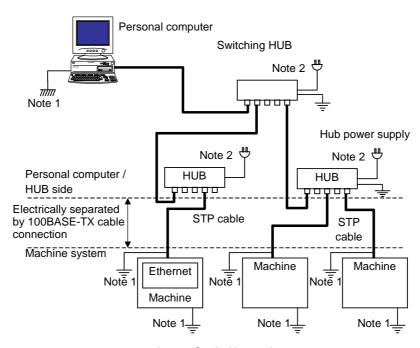

NOTE

To ensure the safe operation of the system, clamp and shield the cables.

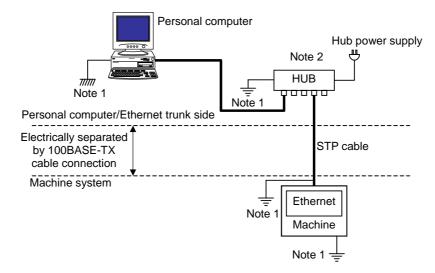

NOTE

- 1 To secure fast response, FL-net communication is not provided with a retransmission process at intervals of several seconds, unlike normal Ethernet communication. It is, therefore, necessary to provide more noise resistance than that provided by general Ethernet wiring work.
- 2 After the laying of cables, conduct satisfactory communication tests not only before system operation but after system operation from the viewpoint of noise prevention measures.

Cable route

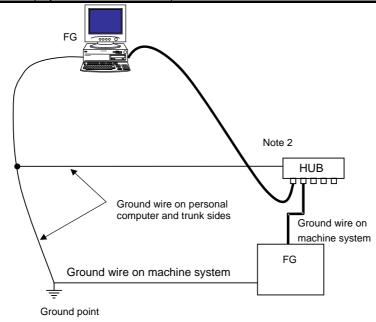


(A-cabinet)



Grounding the Network

Even if the grounding condition on the machine side is satisfied, the communication line can pick up noise from the machine, depending on the machine installation condition and environment, thus resulting in a communication error. To protect against such noise, the machine should be separated and insulated from the Ethernet trunk cable and personal computer. Examples of connection are given below.


Large-Scale Network

Small-Scale Network

NOTE

- 1 The ground between PC/HUB side and machine system side must be separated. If it is impossible to separate the ground because there is only one grounding point, connect the ground cable for each system to the grounding point independently. (See figure below.)
 - The resistance for grounding must be less than 100-ohm (Class D). The thickness of the ground cable is the same as the thickness of AC power cable or more. At least thickness of 5.5mm² is necessary.
- 2 Note that the number of allowable hub-to-hub connections depends on the type of hub.
- 3 There is possibility that noise makes the obstacle of communication even if the ground is separated using the 100BASE-TX. In the case of using the FAST Ethernet/FAST Data Server under the worst environment, please separate between the PC/Trunk line side and machine system side completely using the 100BASE-FX (Optical fiber media).

Wiring on a single ground point

4.10.2.6 Check Items at Installation

The following table lists check items at installation.

	Check item	Description	Check
Et	hernet cable		
		Use cables which satisfies all the following conditions:	
	Turne	1) With shielding	
	Type	2) Twisted-pair cable	
		3) Category 5	
	Length	The cable length shall be within 100 m (50 m for a movable cable recommended by FANUC).	
		For a twisted-pair cable, the following pins shall be paired:	
	Connection	1) Pin No. 1 (TX+) – pin No. 2 (TX-)	
		2) Pin No. 3 (RX+) – pin No. 6 (RX-)	
		The Ethernet cables shall be bound separately from the following cables or covered with an electromagnetic shield ^(Note) :	
	Separation	1) Group A: AC power lines, power lines for motors, and others	
		2) Group B: Current DC (24 VDC) and others	
	Chialdina	For a shielded cable, the part of which outer coating is peeled off and exposed	
	Shielding	shall be fixed to the ground plate with a clamp fixture.	
	Clamping	The ground plate shall be located as nearest to the CNC as possible (to make the	
	Clamping	cable between the ground plate and CNC hard to be affected by noise).	
	Connectors	Any cable connector shall not be pulled (to prevent poor contact of the connector).	
	Wiring	No cable shall be laid under a heavy object.	
	Bending radius	The bending radius shall be at least four times as long as the diameter of the cable.	
	For movable	For a movable part, a cable for a movable part shall be used.	
	part	For a movable part, a cable for a movable part shall be used.	
Нι	JB		
	Use conditions	The "cautions on use" of the hub shall be observed (A terminating resistor shall be mounted properly if required).	
	Grounding	The hub shall be grounded.	
	Cabinet	The hub shall be installed in an enclosed cabinet.	
	Vibration	The hub shall be installed so that it is not affected by vibration.	
	Bending radius	The bending radius shall be at least four times as long as the diameter of the cable.	

NOTE

Covering a group with an electromagnetic shield means that shielding is provided between groups with grounded steel plates.

4.11 CONNECTING THE SENSOR CONNECTION CABLE

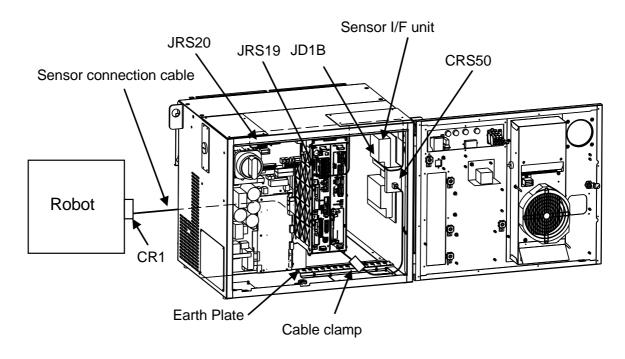


Fig. 4.11 Connecting the sensor connection cable

⚠ CAUTION

Sensor connection cable should be clamped to Earth plate by cable clamp.

Table4.11 Specification of cable

Diameter (mm)	Weight (kg/m)	Minimum bending radius (mm)
8.5	0.115	200

5 TRANSPORTATION AND INSTALLATION

This chapter describes the transportation and installation for the controller.

5.1 TRANSPORTATION

The controller is transported by a crane. Attach a sling to eyebolts at the top of the controller.

Crane capacity: Minimum 300kg Sling capacity: Minimum 300kg

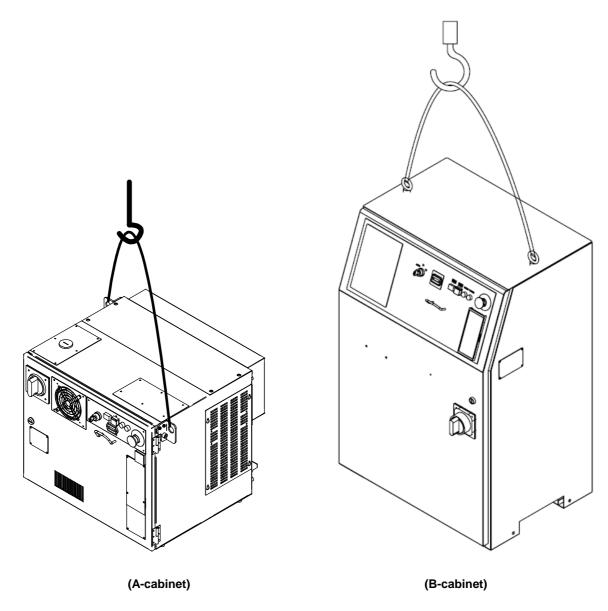


Fig.5.1 Transportation

5.2 INSTALLATION

5.2.1 Installation Method

Following is the installation method for cabinet.

When installing the controller, allow the space for maintenance shown in the following figure.

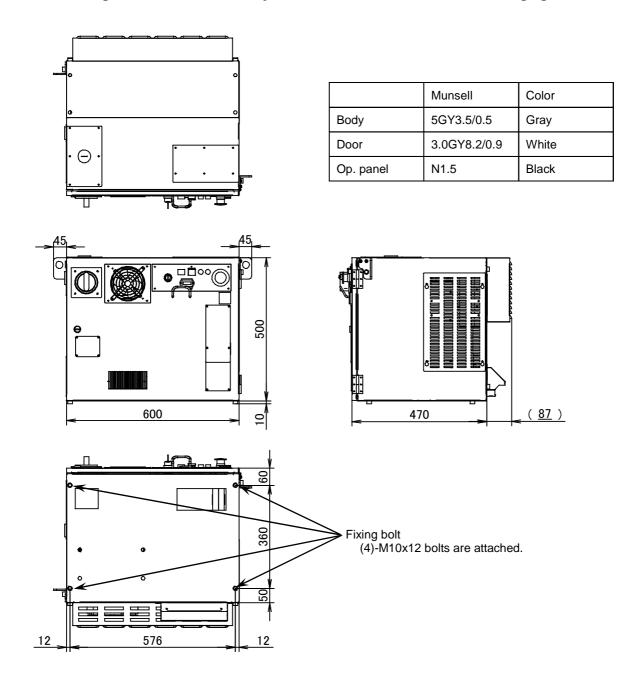


Fig.5.2.1(a1) External dimensions (A-cabinet)

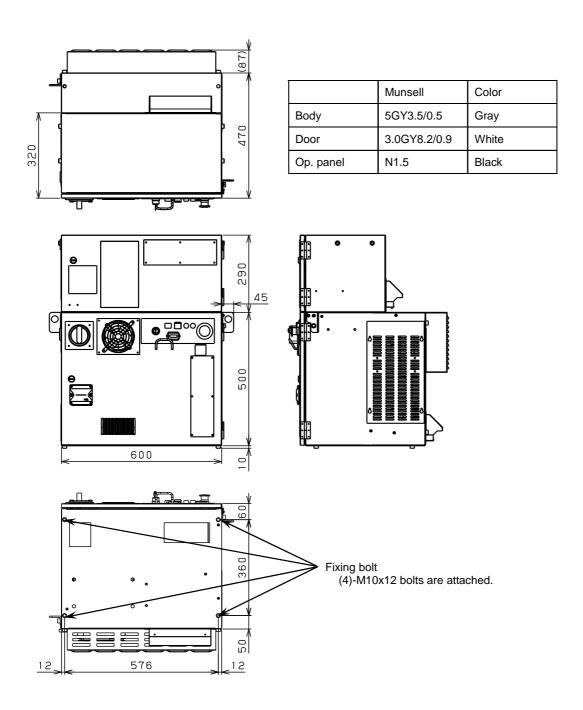


Fig.5.2.1(a2) External dimensions (A-cabinet with Top box)

12

576

Color

Gray

White

Black

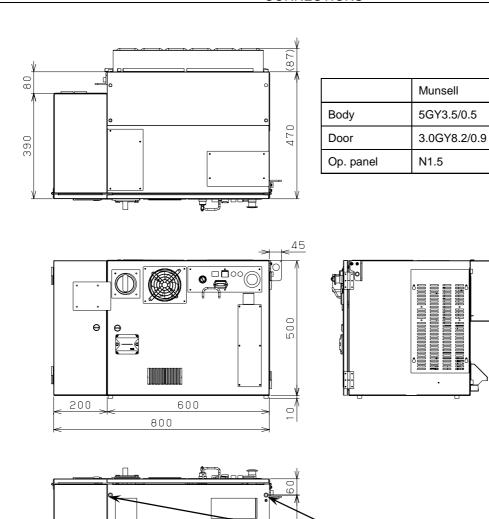


Fig.5.2.1(a3) External dimensions (A-cabinet with Side box)

Fixing bolt

(4)-M10x12 bolts are attached.

360

12

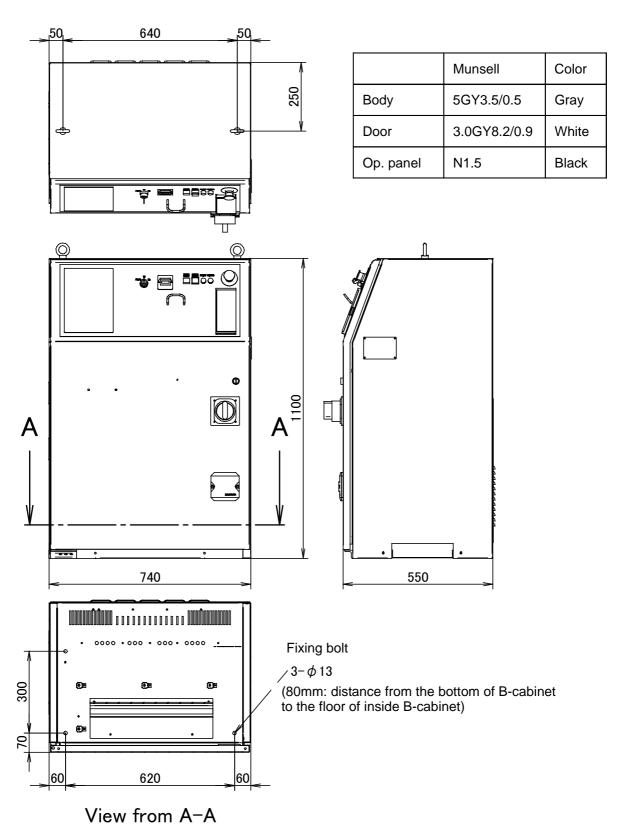
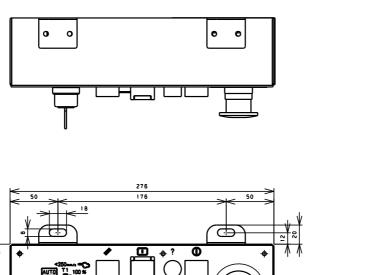



Fig.5.2.1(b) External dimensions (B-cabinet)

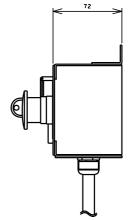
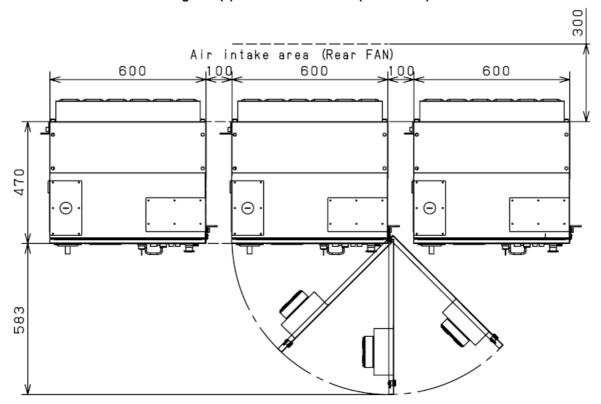



Fig.5.2.1(c) External dimensions (Switch box)

NOTE

Keep this area for maintenance and the radiation of heat.

Fig.5.2.1 (d) Installation dimensions (A-cabinet)

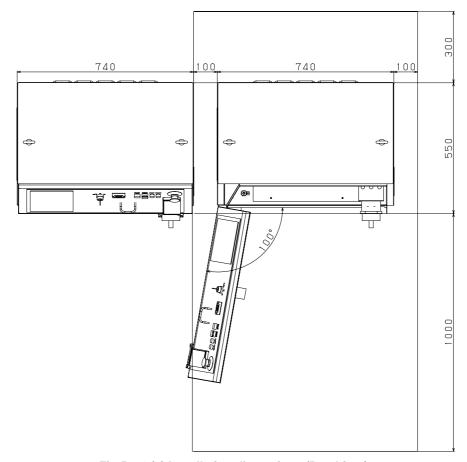


Fig.5.2.1 (e) Installation dimensions (B-cabinet)

NOTE

Keep this area for maintenance and the radiation of heat.

5.2.2 Assemble at Installation

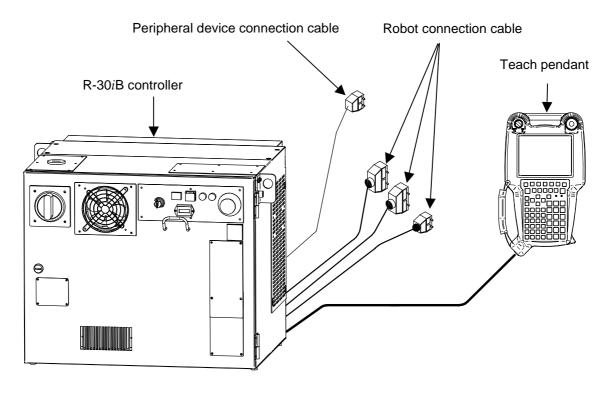


Fig.5.2.2 (a) Assemble at installation (A-cabinet)

Fig.5.2.2 (b) Assemble at installation (B-cabinet)

5.3 INSTALLATION CONDITION

ltem	Model	Specification/condition
Rated Voltage	All models	Trans. Type E:380-415, 440-500, 500-575VAC(*1)
		Trans. Type D:200-230, 380-400VAC
		50/60Hz 3phases
		·
		(*1) In case of NRTL controller with UL/CSA
		breaker (600V Rating), 500-575VAC tap can be
		used.
Tolerant fluctuation	All models	Tolerant voltage fluctuation: +10% -15%
Tolerant nactaation	7 til models	Tolerant frequency fluctuation: ±1Hz
Input nower course	M-900iA/400L,600,M-900iB/400L,700	18kVA
Input power source		
capacity	M-900 <i>i</i> A/200P, M-2000 <i>i</i> A	30kVA
	R-2000 <i>i</i> B/200T,220U,220US,	15kVA
	M-410 <i>i</i> B,M-900 <i>i</i> A/260L,350,150P,	
	M-410 <i>i</i> C,M-900 <i>i</i> B/280L,360	
	R-2000iB (except /200T,220U,220US),	12kVA
	R-2000 <i>i</i> C,R-1000 <i>i</i> A,M-420 <i>i</i> A,M-421 <i>i</i> A,	
	M-710 <i>i</i> C,M-2 <i>i</i> A,M-3 <i>i</i> A	
	F-200 <i>i</i> B	5kVA
	M-430 <i>i</i> A/2PH,4FH,2P	3.5kVA
	ARC Mate 120iC,M-20iA,CR-35iA	3kVA
	ARC Mate 100iC,M-10iA	2kVA
Average power	M-900iA/400L,600,150P,	5kW
consumption	M-900 <i>i</i> B/700,400L	
oonoumpaon	M-900 <i>i</i> A/200P	10kW
	M-2000 <i>i</i> A	8kW
	R-2000 <i>i</i> B/200T,220U,220US,M-410 <i>i</i> B,	
		3kW
	M-900 <i>i</i> A/260L,350,M-410 <i>i</i> C,	
	M-900iB/280L,360	0.5114
	R-2000iB (except /200T,220U,220US),	2.5kW
	R-2000 <i>i</i> C,R-1000 <i>i</i> A,M-420 <i>i</i> A,M-421 <i>i</i> A,	
	M-710 <i>i</i> C,M-2 <i>i</i> A,M-3 <i>i</i> A	
	ARC Mate100iC,ARC Mate 120iC	1kW
	M-10 <i>i</i> A,M-20 <i>i</i> A	
	M-430 <i>i</i> A/2PH,4FH,2P,F-200 <i>i</i> B,	
	CR-35 <i>i</i> A	
Permissible ambient	All models	Operating 0°C to 45°C
temperature		Storage, Transport -20°C to 60°C
		Temperature change 0.3°C/minute or less
Permissible ambient	All models	Normal: 75%RH or less,no condensation
humidity		Short period(less than 1 month): 95%RH or less,
		no condensation
Surrounding gas	All models	An additional protective provision is necessary if
Carroanang gao	7 til modele	the machine is installed in an environment in which
		there are relatively large amounts of contaminants
		(dust, dielectric fluid, organic solvent, acid,
		corrosive gas, and/of salt).
Installation category	All models	Installation category III, Pollution degree 3,
Installation category	All Houcis	
Vibration "	All maddala	IEC60664-1 and IEC61010-1
Vibration acceleration	All models	4.9m/s ² (0.5G) or less. When using the robot in a
		location subject to serious vibration, consult with
		your FANUC sales representative.
Altitude	All models	Operating:Up to 1,000m above sea level
		Non-operating:Up to 12,000m above sea level

Item	Model		Specification/condition
lonized and non-ionized radiation	Common to a	ill models	A shielding provision is necessary if the machine is installed in an environment in which it is exposed to radiation (microwave, ultraviolet rays, laser beams, and/or X-rays).
Mass of controller	A-cabinet	All models (Except below models)	120kg
(In case of 2 cabinet configuration, this means mass of each cabinet)		R-2000 <i>i</i> B/200T, 220U,220US, M-900 <i>i</i> A, M-900 <i>i</i> B, M-410 <i>i</i> B	140kg
	B-cabinet	All models (Except below models)	180kg
		R-2000 <i>i</i> B/200T, 220U,220US, M-900 <i>i</i> A, M-900 <i>i</i> B, M-410 <i>i</i> B	200kg
Degree of protection	A-cabinet	·	IP54
	B-cabinet Teach pendant		

NOTE

The power rating indicated above is sufficient as the continuous rating. However, when the robot is rapidly accelerating, the instantaneous requirement may increase to several times the continuous rating.

If the acceleration/deceleration override (ACC) greater than 100% is set in the robot program, the extreme current may flow to the robot controller instantaneously and the input voltage of robot controller will drop.

In this case, if the supply voltage is decreased 10% or more per rated voltage, Power supply alarm, Move error excess alarm, DCLV alarm of servo amplifier may occur.

NOTE

In case of CE controller

R-30*i*B controller is a group 1, class A product according to IEC55011.

This means that this product does not generate and/or use intentionally radio-frequency energy, in the form of electromagnetic radiation, inductive and/or capacitive coupling, for the treatment of material or inspection / analysis purpose and that it is suitable for use in all establishments other than domestic and those directly connected to a low voltage power supply network which supplies buildings used for domestic purposes.

There may be potential difficulties in ensuring electromagnetic compatibility in environments other than industrial, due to conducted as well as radiated disturbances.

This product must not be used in residual areas.

This product may cause interference if used in residential areas. Such use must be avoided unless the user takes special measures to reduce electromagnetic emissions to prevent interference to the reception of radio and television broadcasts.

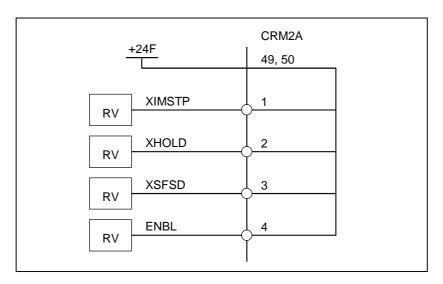
5.4 ADJUSTMENT AND CHECKS AT INSTALLATION

Adjust the robot according to the following procedure at installation.

No.	Description				
1	Visually check the inside and outside of the controller.				
2	Check the screw terminals for proper connection.				
3	Check that the connectors and printed circuit boards are firmly connected.				
4	Check transformer tap setting. (See Section 6.2 in MAINTENANCE)				
5	The breaker off and connect the input power cable.				
6	Check the input power voltage and transformer outputs.				
7	Press the EMERGENCY STOP button on the operator panel and turn on the controller.				
8	Check the interface signals between controller and robot mechanical unit.				
9	Check the parameters. If necessary, set them.				
10	Release the EMERGENCY STOP button on the operator panel. Turn on the controller.				
11	Check the movement along each axis in manual jog mode.				
12	Check the interface signals of end effector.				
13	Check the peripheral device control interface signals.				

5.5 RESETTING OVERTRAVEL AND EMERGENCY STOP AT INSTALLATION

An overtravel and emergency stop occur when the robot is operated for the first time after it is installed and the mechanical and controllers are wired. This section describes how to reset the overtravel and emergency stop.


Remove the red plate fastening the swiveling axis beforehand.

The J2 and J3 axes are pressed against the hard stops at shipment. Therefore, an overtravel alarm occurs when the power is turned on after installation.

The robot can also be in an emergency stop state if the peripheral device control interface is not connected.

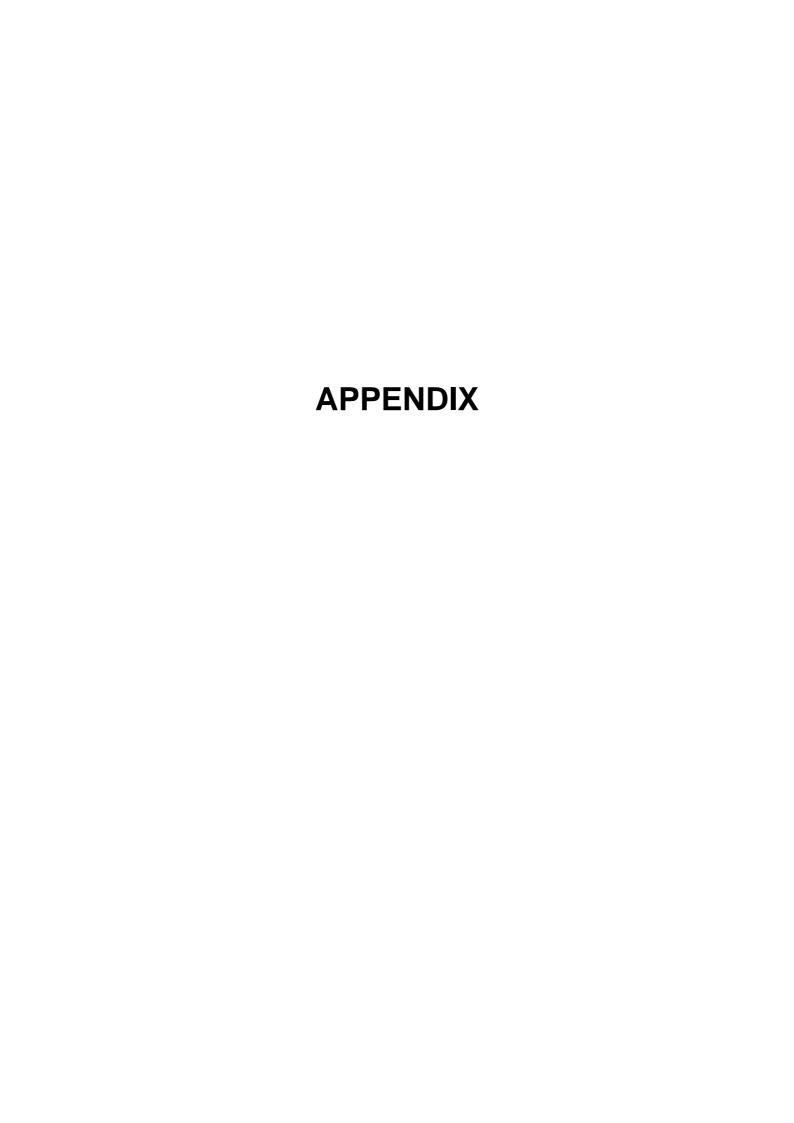
5.5.1 Peripheral Device Interface Processing

Take the following actions if signals XIMSTP, XHOLD, XSFSD, and ENBL are not used.

5.5.2 Resetting Overtravel

- 1) Select [OT release] on the overtravel release screen to release each robot axis from the overtravel state.
- 2) Hold down the shift key, and press the alarm release button to reset the alarm condition.
- 3) Still hold down the shift key, and jog to bring all axes into the movable range

5.5.3 How to Disable/Enable HBK


- 1) Press [MENU] key on the teach pendant.
- 2) Select [NEXT].
- 3) Select [SYSTEM].
- 4) Press "F1" (TYPE) on the teach pendant.
- 5) Select "Config" to disable/enable HBK.

Status	Hand Broken enable/disable setting	HBK (*1)	HBK detection	Robot operation	Message
1	Enable	CLOSE	Yes	Possible	None
2	Enable	OPEN	Yes	Impossible	SRVO-006
3	Disable	CLOSE	No (*2)	Impossible	SRVO-302
4	Disable	OPEN	No	Possible	At cold start, SRVO-300

N	OTE			
1	Robot EE connector			
		CLOSE		OPEN
	24V		24V	
2	XHBK The moment the HBK of	circuit is closed	XHBK	cours HRK setting
۷	needs to be valid manu opened, causing alarm	ıally. When the		
3	If the power is turned o is entered, so the alarm			stated in *2, status 4

5.5.4 How to Disable/Enable Pneumatic Pressure Alarm (PPABN)

- 1) Press [MENU] key on the teach pendant.
- 2) Select [NEXT].
- 3) Select [SYSTEM].
- 4) Press "F1" (TYPE) on the teach pendant.
- 5) Select "Config" to disable/enable PPABN.

SPECIFICATION LIST

Name	Ordering	FANUC Specification	Note
	Specification		
Main board	A05B-2600-H001	A16B-3200-0730	Standard
		A16B-3200-0780	
	A05B-2600-H002	A16B-3200-0731	Option (Force sensor)
		A16B-3200-0781	
	A05B-2600-H003	A16B-3200-0732	Option (Force sensor)
		A16B-3200-0782	(High speed com. CPU)
CPU card	A05B-2600-H020	A20B-3300-0686	Standard / SDRAM 32Mbyte
		A17B-3301-0106	
	A05B-2600-H021	A20B-3300-0687	Standard / SDRAM 64Mbyte
		A17B-3301-0107	
	A05B-2600-H022	A20B-3300-0688	Standard / SDRAM 128Mbyte
		A17B-3301-0108	
	A05B 2600 H022	A20B-3300-0683	High speed / SDRAM 32Mbyte
	A05B-2600-H023	A17B-3301-0103	
	A05D 0000 H004	A20B-3300-0684	High speed / SDRAM 64Mbyte
	A05B-2600-H024	A17B-3301-0104	1
	A05D 0000 H005	A20B-3300-0685	High speed / SDRAM 128Mbyte
	A05B-2600-H025	A17B-3301-0105	1
Axis control card	A05B-2600-H040	A20B-3300-0664	6-axis
		A20B-3300-0774	7
	A05B-2600-H041	A20B-3300-0663	12-axis
		A20B-3300-0773	7
	A05B-2600-H042	A20B-3300-0662	18-axis
		A20B-3300-0772	7
	A05B-2600-H043	A20B-3300-0661	24-axis
		A20B-3300-0771	7
	A05B-2600-H044	A20B-3300-0660	36-axis
		A20B-3300-0770	7
FROM/SRAM module	A05B-2600-H060	A20B-3900-0283	FROM 32M/ SRAM 1M
		A20B-3900-0297	
	A05B-2600-H061	A20B-3900-0284	FROM 32M/ SRAM 2M
		A20B-3900-0298	
	A05B-2600-H062	A20B-3900-0285	FROM 32M/ SRAM 3M
		A20B-3900-0299	
	A05B-2600-H063	A20B-3900-0286	FROM 64M/ SRAM 1M
	A05B-2600-H064	A20B-3900-0287	FROM 64M/ SRAM 2M
	A05B-2600-H065	A20B-3900-0288	FROM 64M/ SRAM 3M
	A05B-2600-H066	A20B-3900-0280	FROM 128M/ SRAM 1M
	A05B-2600-H067	A20B-3900-0281	FROM 128M/ SRAM 2M
	A05B-2600-H068	A20B-3900-0282	FROM 128M/ SRAM 3M
Battery	A02B-0200-K102	A98L-0031-0012	For memory backup
Backplane	A05B-2600-H080	A20B-2004-0980	2 slot
·	A05B-2600-H081	A20B-2004-0990	4 slot
Power supply unit	A05B-2600-H100	A16B-2203-0910	
Fixing plate for CF card	A05B-2500-J300		With adapter for CF card

Name	Ordering Specification	FANUC Specification	Note
Emergency stop board		A20B-2200-0650	For A-cabinet
		A20B-2102-0050	For B-cabinet
16-pole terminal block		A63L-0002-0154#116	(TBOP14:A-cabinet)
			(TBOP10:B-cabinet)
			Manufacturer's specification
			(WAGO):734-116
14-pole terminal block		A63L-0002-0154#114	(TBOP11:B-cabinet)
			Manufacturer's specification
12 pale terminal block		A63L-0002-0154#112	(WAGO):734-114
12-pole terminal block		Ab3L-0002-0134#112	(TBOP13:A-cabinet) Manufacturer's specification
			(WAGO):734-112
Jumper pin		A63L-0002-0154#402F	Manufacturer's specification
			(WAGO):734-402F
Operation lever		A63L-0002-0154#230-M	2 pieces of 734-230 and operation
			manual are included in FANUC's
			specification
			Manufacturer's specification
			(WAGO):734-230
CRMA96 connector		A63L-0001-0812#R06DX	NTED, B-cabinet
Rece-housing			Manufacturer's specification
0011100		4001 0004 0040#0014	(TE connectivity): 1-1318119-3
CRMA96 connector		A63L-0001-0812#CRM	NTED, B-cabinet
Rece-contact			Manufacturer's specification
(AWG18-22) Process I/O board JA	A05B-2600-J001	A16B-2204-0010	(TE connectivity): 1318107-1 DI/DO=96/96(Source type)
Process I/O board JB	A05B-2600-J002	A16B-2204-0011	DI/DO=40/40(Source type)
I/O Link cable	A05B-2603-J170	A10D-2204-0011	Between main board and process I/O
(Process I/O JA, JB)	A05B-2603-J171		Between process I/O and process I/O
Peripheral device	A05B-2603-J200		Connected length: 10m (one)
connection cable	A05B-2603-J201		Connected length: 20m (one)
(Process I/O JA, JB)	A05B-2603-J202		Connected length: 30m (one)
Peripheral device	A05B-2603-J203		Connected length: 10m (one)
connection cable	A05B-2603-J204		Connected length: 20m (one)
(Process I/O JA)	A05B-2603-J205		Connected length: 30m (one)
Process I/O board MA	A05B-2600-J020	A20B-2004-0380	DI/DO=20/16(Source type)
Process I/O board MB	A05B-2600-J021	A20B-2101-0730	WI/WO=5/4(Sink type), D/A=2
I/O Link cable (Process I/O MA)	A05B-2601-J172		Between main board and process I/O
	A05B-2601-J240		Connection length 10m (one): CRMA52
Peripheral device cable (Process I/O MA)	A05B-2601-J241		Connection length 20m (one): CRMA52
	A05B-2601-J242		Connection length 30m (one): CRMA52
I/O Link cable (Process I/O MB)	A05B-2601-J174		Between main board and process I/O
Welding machine	A05B-2601-J246		Connection length 3m (one): CRW11
connection cable (FANUC I/F/elbow type)	A05B-2601-J247		Connection length 7m (one): CRW11
(Process I/O MB)	A05B-2601-J248		Connection length 14m (one): CRW11

Name	Ordering Specification	FANUC Specification	Note
	Specification		Connection length 3m (one):
Welding machine connection cable (FANUC I/F/straight type)	A05B-2601-J250		CRW11
	A05B-2601-J251		Connection length 7m (one): CRW11
	A05B-2601-J252		Connection length 14m (one): CRW11
Process I/O board KA	A05B-2600-J010	A20B-2101-0560	DI/DO=40/40(Source type), D/A=3, A/D=2
Process I/O board KB	A05B-2600-J011	A20B-2101-0561	DI/DO=40/40(Source type), D/A=2
I/O Link cable	A05B-2601-J180		Between main board and process I/O
Process I/O power			·
supply cable			
Peripheral device cable	A05B-2601-J230		Connected length: 10m (one)
(Process I/O KA,KB)	A05B-2601-J231		Connected length: 20m (one)
(1.100000 % 0 1 % 4,112)	A05B-2601-J232		Connected length: 30m (one)
Welding machine	A05B-2601-J235		Connection length 3m (one):
connection cable	71000 2001 0200		CRW10
(FANUC I/F/elbow type) (Process I/O KB)	A05B-2601-J236		Connection length 7m (one): CRW10
	A05B-2601-J237		Connection length 14m (one): CRW10
I/O Unit-MODEL A	A05B-2601-J130		A-cabinet (five slots)
(Base and interface unit)	71000 2001 0100		A03B-0819-C003: Base unit
(base and interface unit)			A03B-0819-C011: Interface unit
	A05B-2603-J130		B-cabinet (five slots)
	7.002 2000 0.00		A03B-0819-C002: Base unit
			A03B-0819-C011: Interface unit
6-axis servo amplifier	A05B-2601-H050	A06B-6400-H101	A-cabinet
	A05B-2603-H050		B-cabinet
	A05B-2601-H051	A06B-6400-H102	A-cabinet
	A05B-2603-H051		B-cabinet
	A05B-2601-H052	A06B-6400-H002	A-cabinet
	A05B-2603-H052	1 1002 0 100 1 1002	B-cabinet
	A05B-2601-H053	A06B-6400-H003	A-cabinet
	A05B-2603-H053	7.002 0.00 7.000	B-cabinet
	A05B-2601-H054	A06B-6400-H004	A-cabinet
	A05B-2603-H054	1.132 0.00 1.00 1	B-cabinet
	A05B-2601-H055	A06B-6400-H005	A-cabinet
	A05B-2603-H055	7.332 3.337 1000	B-cabinet
Servo amplifier	A05B-2605-J040	A06B-6240-H105	
Servo ampliller	#H105	7.000 02 10 11100	
	A05B-2605-J040	A06B-6240-H106	
	#H106	7.000 02 10 11100	
	A05B-2605-J040	A06B-6240-H201	
	#H201		
	A05B-2605-J040	A06B-6240-H209	
	#H209		
	A05B-2605-J040	A06B-6240-H301	
	#H301		
CRR65A/B connector		A63L-0001-0460#032KSX	Auxiliary Axis Brake
Rece-housing		7.332 3331 0 100#00ZROX	Manufacturer's specification
			(TE connectivity): 1-178128-3
	<u> </u>	l.	1 (1 = 0011110011411y). 1 170120-0

Name	Ordering	FANUC Specification	Note
	Specification		
CRR65A/B connector		A63L-0001-0456#ASL	Auxiliary Axis Brake
Rece-contact			Manufacturer's specification
(AWG16-20)			(TE connectivity): 175218-2
CRM68 connector		A63L-0001-0812#R03SX	Auxiliary Axis Over Travel
Rece-housing			Manufacturer's specification
			(TE connectivity): 1-1318120-3
CRM68 connector		A63L-0001-0812#CRM	Auxiliary Axis Over Travel
Rece-contact			Manufacturer's specification
(AWG18-22)			(TE connectivity): 1318107-1
Discharge resistor	A05B-2601-C100		A-cabinet
ĺ	A05B-2601-C102		A-cabinet
	A05B-2603-C100		B-cabinet
Regenerative resistor	A05B-2601-C101		A-cabinet
	A05B-2603-C101		B-cabinet
αiPS	A06B-6200-H015		Power supply regeneration
	A06B-6200-H037]
Transformer	A05B-2601-H350	A80L-0024-0028	A/B-cabinet, 3kVA, TYPE E
	A05B-2603-H350		, ,
	A05B-2601-H354	A80L-0024-0029	A/B- cabinet, 3kVA, TYPE D
	A05B-2603-H354		, ,
	A05B-2601-H351	A80L-0026-0040#A	A- cabinet, 7.5kVA, TYPE E
	A05B-2601-H355	A80L-0026-0041#A	A- cabinet, 7.5kVA, TYPE D
	A05B-2601-H352	A80L-0028-0024#A	A- cabinet,10.5kVA, TYPE E
	A05B-2601-H356	A80L-0028-0027#A	A- cabinet,10.5kVA,TYPE D
	A05B-2603-H351	A80L-0026-0040	B- cabinet, 7.5kVA, TYPE E
	A05B-2603-H355	A80L-0026-0041	B- cabinet, 7.5kVA, TYPE D
	A05B-2603-H352	A80L-0028-0024	B- cabinet,10.5kVA, TYPE E
	A05B-2603-H356	A80L-0028-0027	B- cabinet,10.5kVA,TYPE D
	A05B-2603-H353	A80L-0028-0025	B- cabinet,13.0kVA, TYPE E
	A05B-2603-H357	A80L-0028-0028	B- cabinet,13.0kVA,TYPE D
Brake release unit			R-2000iB,R-2000iC,
connection cable			R-1000 <i>i</i> A,M-2 <i>i</i> A,M-3 <i>i</i> A
		A660-2005-T559	M-710 <i>i</i> C,M-410 <i>i</i> B,M-420 <i>i</i> A,M-421 <i>i</i> A,
			M-410 <i>i</i> C
			M-900iA, M-900iB,M-2000iA
		A660-2005-T871	F-200 <i>i</i> B
			M-10 <i>i</i> A,M-20 <i>i</i> A,
		A660-2006-T881	ARC Mate 100iC,ARC Mate 120iC
			CR-35iA
		A660-2006-T888	M-430 <i>i</i> A/2PH,4FH
		A660-2006-T887	M-430 <i>i</i> A/2P
		A660-2005-T711	Aux. Axis
		A660-2006-T803	M-410 <i>i</i> B, M-410 <i>i</i> C
Sensor I/F unit	A05B-2600-C320		CR-35iA

B

TOTAL CONNECTION DIAGRAM

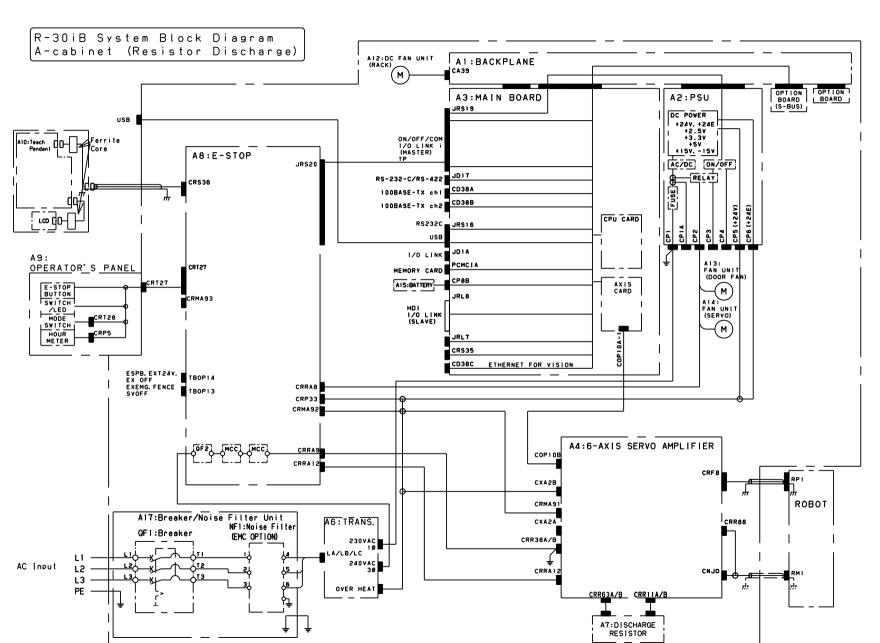


Fig.B (a) System block diagram (A-cabinet / Resistor discharge)

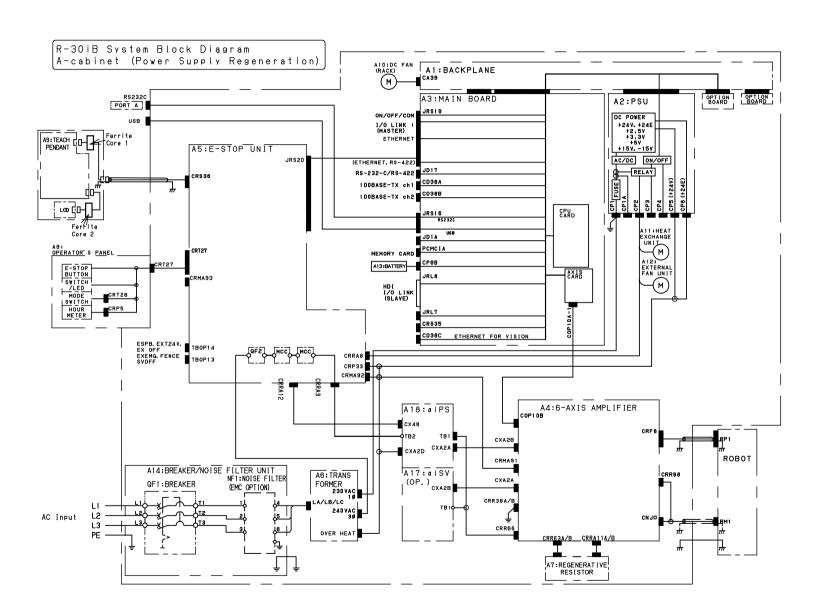
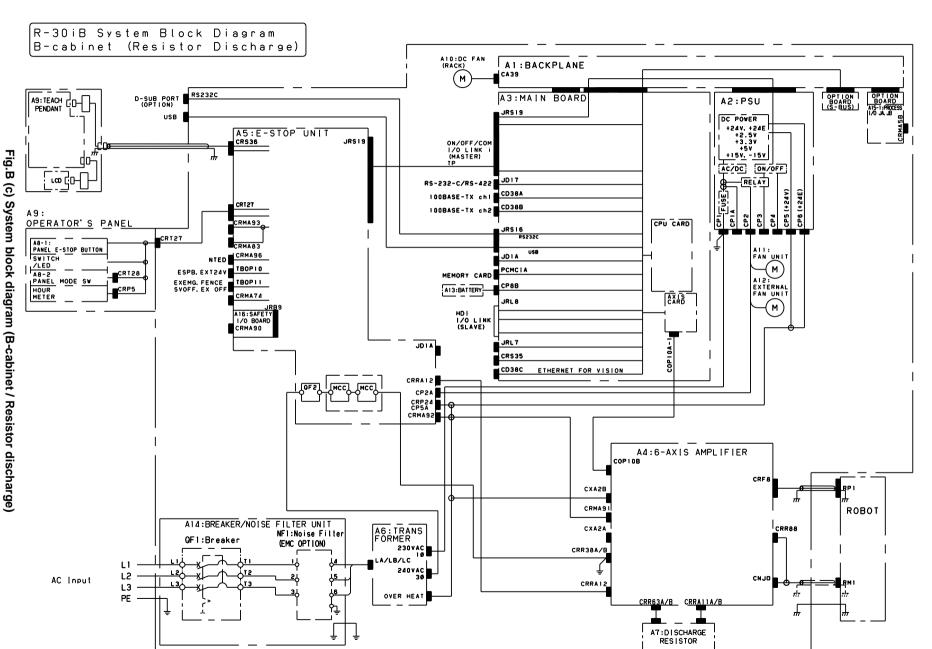



Fig.B (b) System block diagram (A-cabinet / Power supply regeneration)

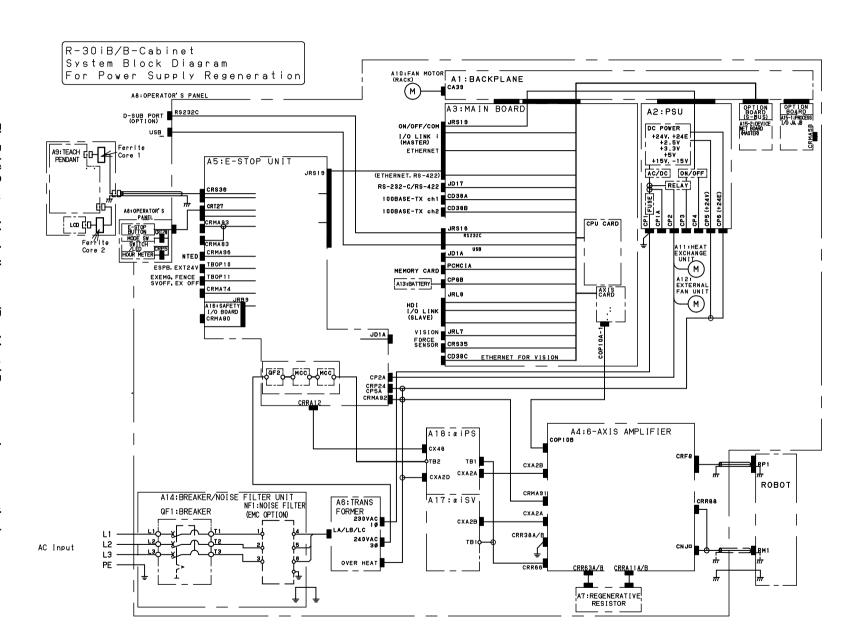


Fig.B (d) System block diagram (B-cabinet / Power supply regeneration)

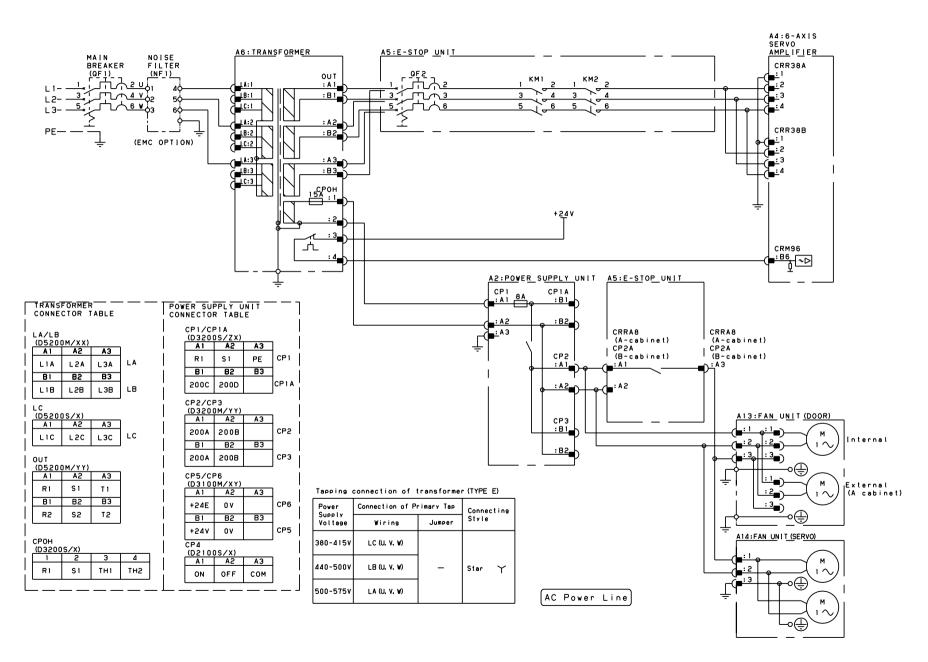
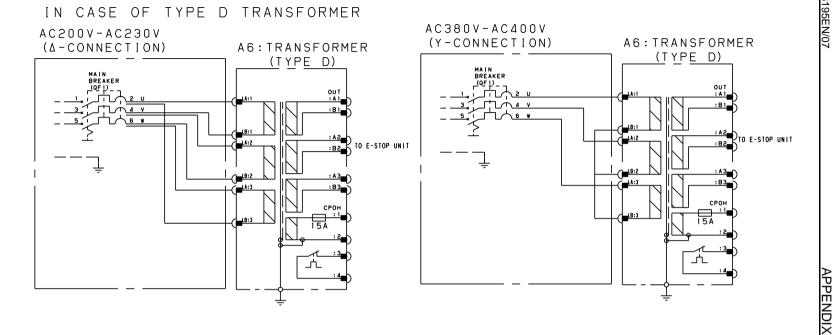
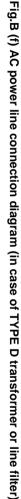
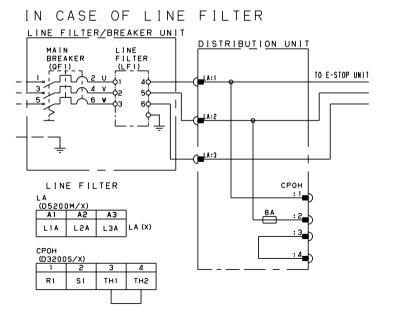
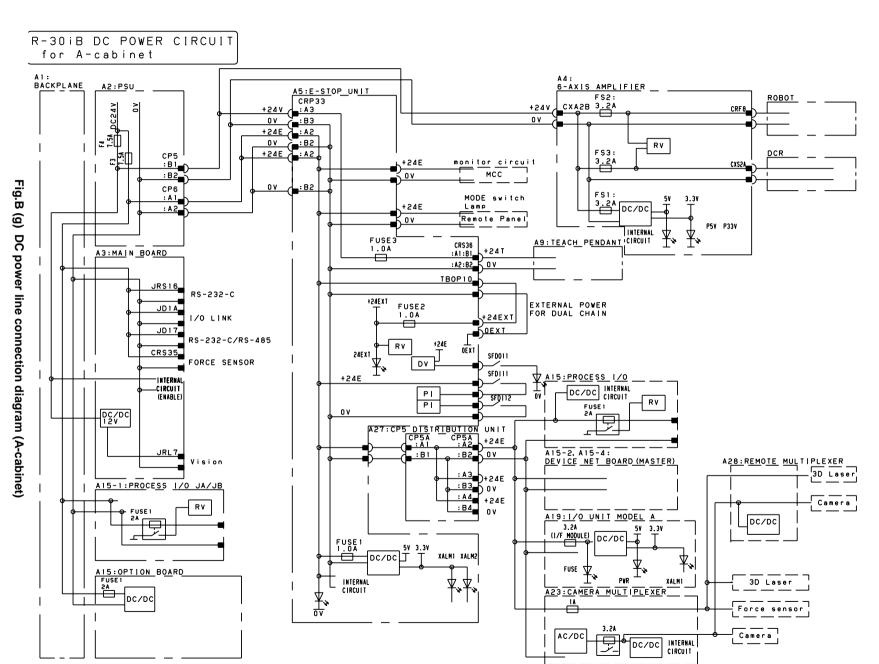
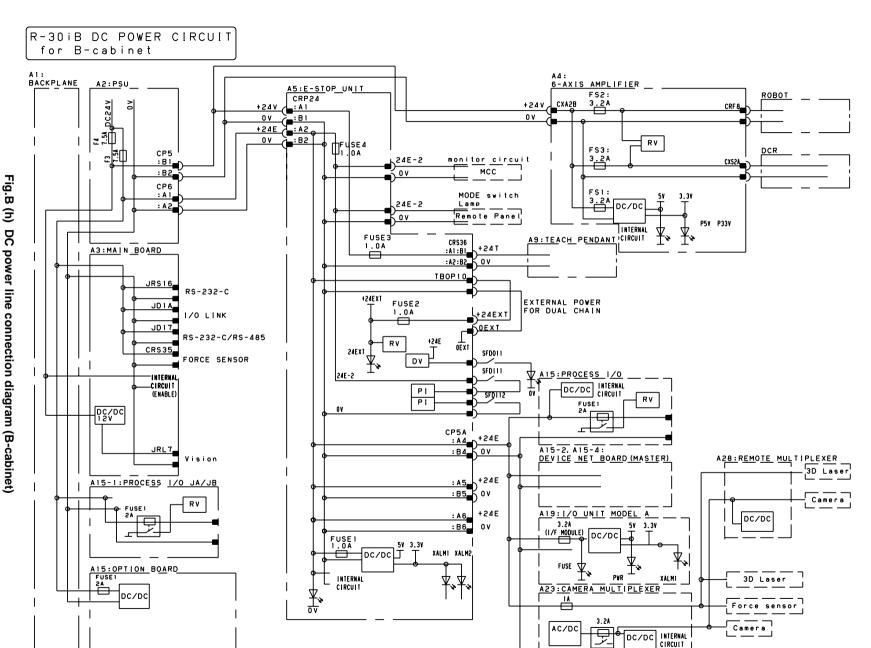





Fig.B (e) AC power line connection diagram Ē case of TYPE Ш transformer)

- 269 -


ROBOT	CONNECTION	Spec. of QF1
M-6iB M-16iB	Y	20A
ARC Mate 100iB ARC Mate 120iB	Δ	20A
R-2000iB (except /200T) M-710iC M-420iA M-421iA F-200iB	Y	20A
	Δ	30A
R-2000 i B/200T M-410 i B M-900 i A/260L M-900 i A/350	Y	30A
	Δ	50A
M-900 i A/600	Y	30A
	Δ	60A

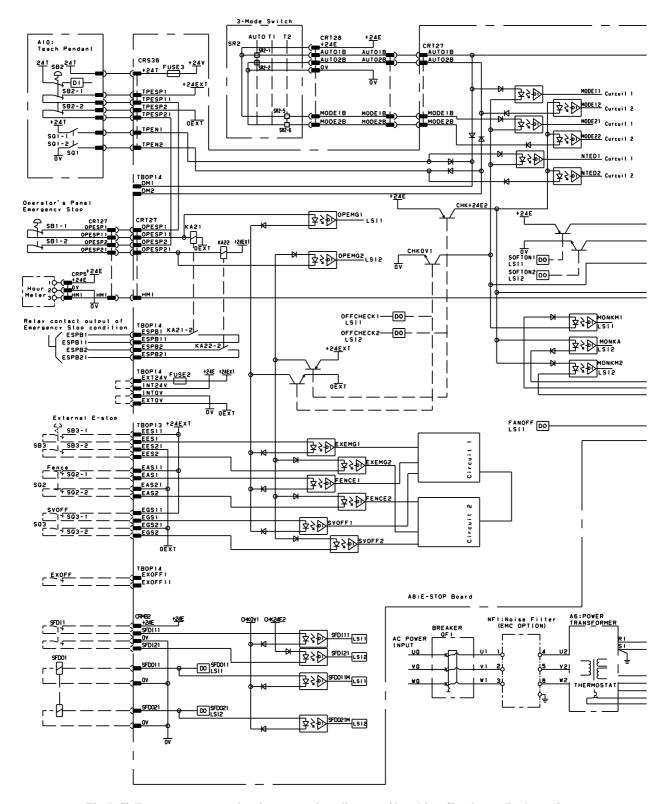
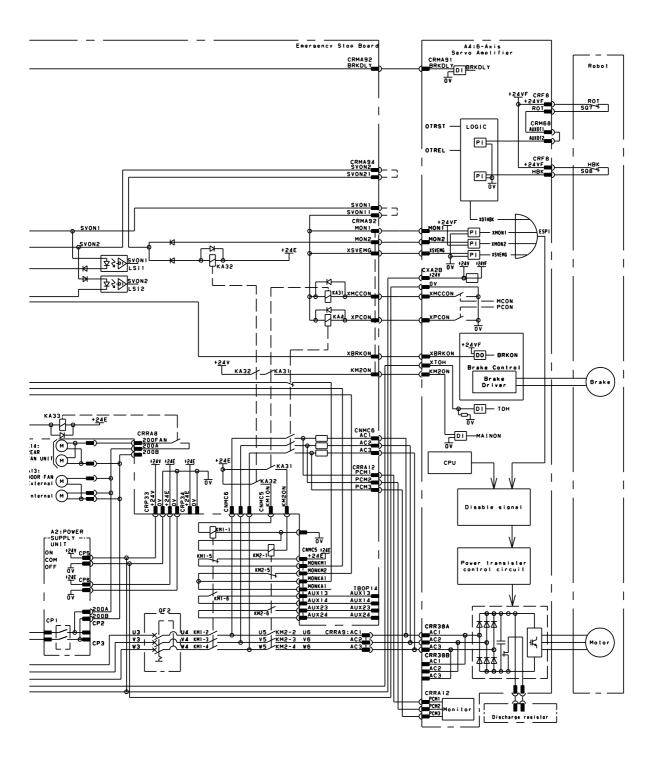

TYPE D TRANSFORMER

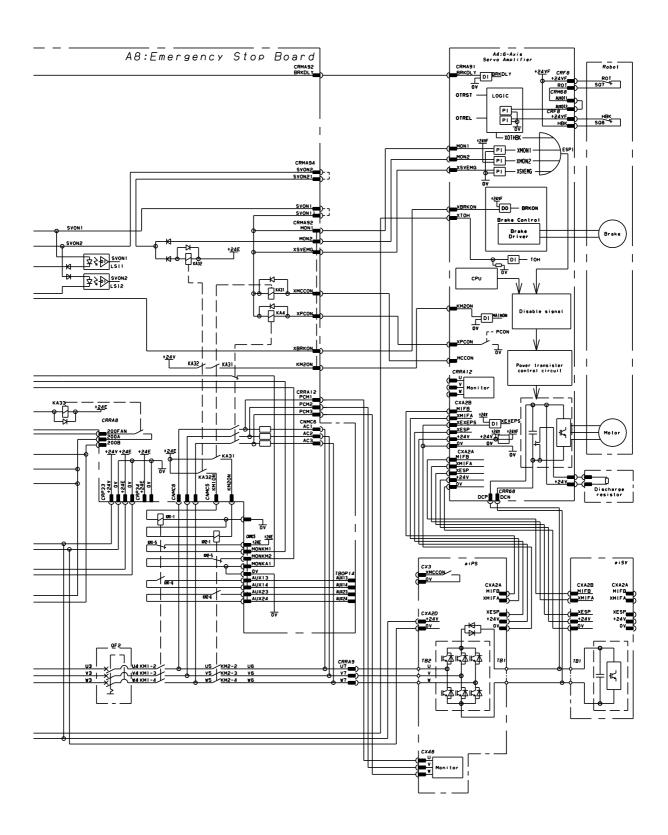
LA/LB (D520)	OM/XX)		
A 1	A2	A3]
LIA	L2A	L3A	LA (X
B1	B2	В3]
L1B	L2B	L3B	LB (X
	(D520) A1 L1A B1	(D5200M/XX) A1 A2 L1A L2A B1 B2	(D5200M/XX) A1 A2 A3 L1A L2A L3A B1 B2 B3

0UT (D520)	DM/YY)		
A 1	A2	A 3]
RI	S 1	ΤI	(Y
ВI	B2	В3	1
R2	s2	Т2	(Y

CPOH (D3200	IS /Y)		
1	2	3	4
RI	S1	THI	TH2

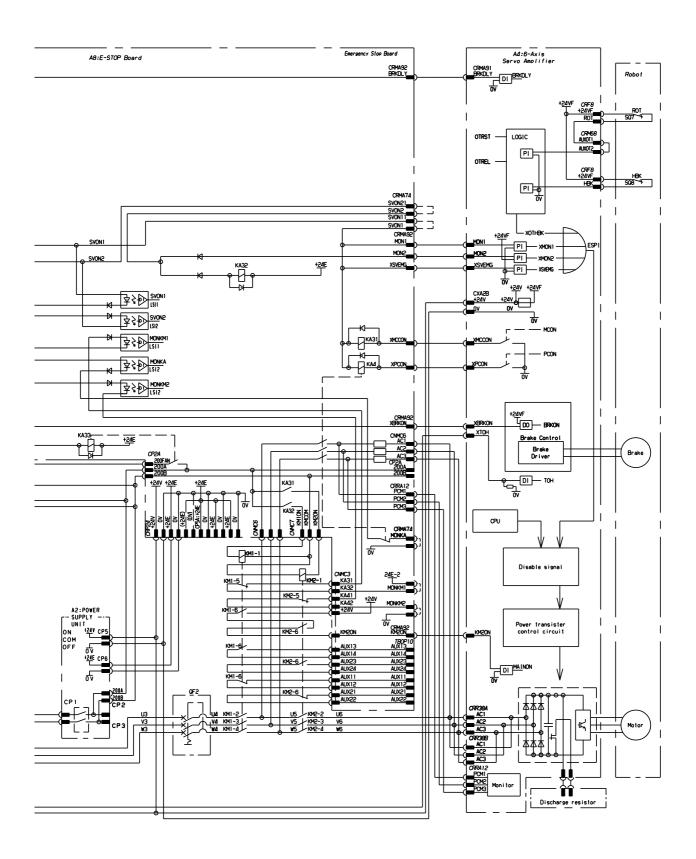
E-STOP CIRCUIT FOR A-CABINET RESISTOR DISCHARGE


Fig.B (i) Emergency stop circuit connection diagram (A-cabinet/Resistor discharge)

E-STOP CIRCUIT FOR A-CABINET POWER SUPPLY REGENERATION

Fig.B (j) Emergency stop circuit connection diagram (A-cabinet/Power supply regeneration)



APPENDIX

E-STOP CIRCUIT FOR B-CABINET RESISTOR DISCHARGE

Fig.B (k) Emergency stop circuit connection diagram (B-cabinet/Resistor discharge)

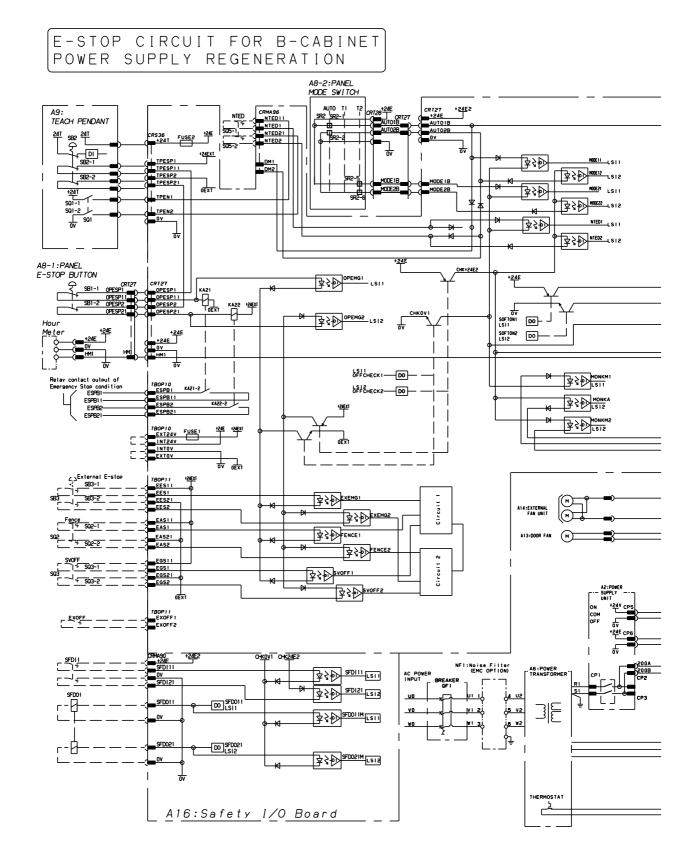
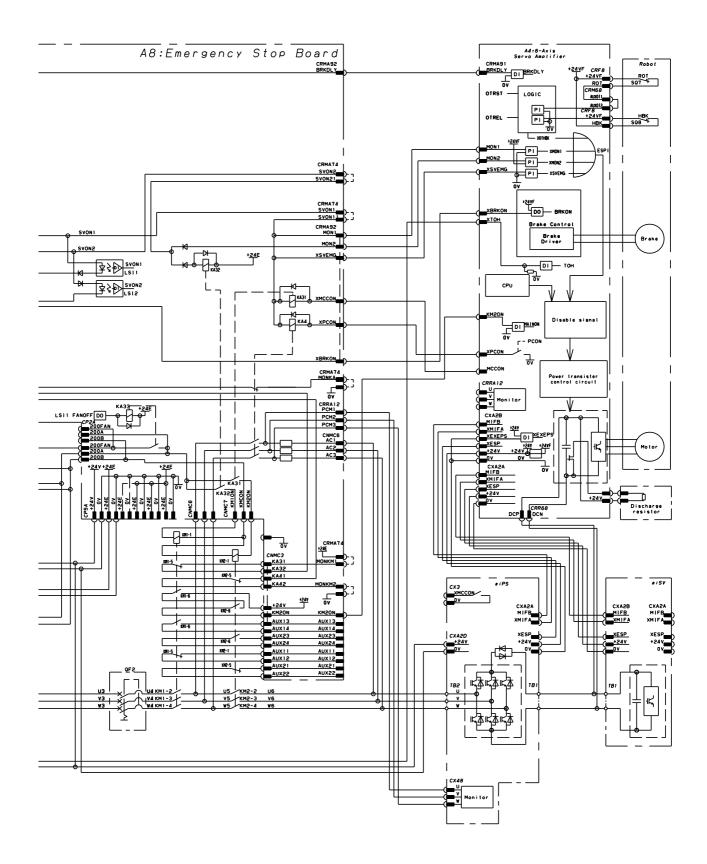



Fig.B (I) Emergency stop circuit connection diagram (B-cabinet/Power supply regeneration)

Emergency Stop Board Connector Table For A-cabinet

JRS20 PCR20

1 0112 0				
1	RXTP	11	RXP_TP	
2	XRXTP	12	RXN_TP	
з	TXTP	13	TXP_TP	
4	XTXTP	14	TXN_TP	
5	ON	15	СОМ	
6	OFF	16	ov	
7	RXSILD1	17	RXSILD2	
8	XRXSILD1	18	XRXS1LD2	
9	TXSILD1	19	TXSILD2	
10	XTXSILD1	20	XTXSILD2	

CRMB2

D1200D (Y)				
A 1	+24E	В1	0 V	
A2	+24E	B2	0 V	
АЗ	SFDI11	В3	SFDI21	
Α4	SFDI12	В4	SFD122	
A5	SFD011	B5	SFD021	
A6	SFD012	В6	SFD022	

E-STOP UNIT

CRRA9 D5200S (X) AC1 AC2 AC3

CRMA93

D1200D(X)					
A 1	+24E	В1	٥٧		
A2	OPD I 1	В2	OPD01		
ΑЗ	21D90	вз	OPD02		
Α4	81D90	В4	OPD03		
A5	OPDI4	B5	OPD04		
A6	OFF 1	В6	OFF11		

CRMA94

D2100D (Y)				
Α1	SVON1	В1	SVON11	
Α2	SVON2	B2	SVON21	
ΑЗ	0PD [5	В3	FANOFF	

СКРЗЗ

D2100D (X)				
A 1	+24E	В1	٥٧	
A2	+24E	В2	٥٧	
ΑЗ	+24V	вз	٥٧	

CRP34

D1200D (X)				
A 1	+24E	В1	٥٧	
A2	+24E	B2	٥٧	

TBOP13

TERMINAL				
1	EES1	Н		
2	EES11	Н		
3	EES2	Н		
4	EES21	Н		
5	EAS1	Н		
6	EAS11	Н		
7	EAS2	Н		
8	EAS21	Н		
9	EGS1	Н		
10	EGS11	Н		
11	EGS2	Н		
12	EGS21	Н		

TBOP14 TERMINAL

1	AUX13	
2	AUX14	
3	AUX23	
4	AUX24	
5	DM1	
6	DM2	
7	ESPB1	
8	ESPB11	
9	ESPB2	
10	ESPB21	
11	EXOFF1	Н
12	EXOFF11	Н
13	EXT24V	Н
14	INT24V	Н
15	INTOV	Н
16	EXTOV	Н

CRT27

D2100D(1)					
A 1	+24E	В1	0٧		
A2 +24	+24E	В2	HM1		
АЗ	AUTO1B	вз	AUTO2B		
Α4	MODE 1 B	В4	MODE2B		
A5	OPESP1	B5	OPESP11		
A6	OPESP2	В6	OPESP21		
Α7	PDO1 (BUSY)	В7	PDI1 (FAULT RESET		
A8	PDO2 (FAULT)	В8	PD12 (CYCLE STAR)		

CDMAGG

D2100D(X)					
A 1	MON2	В1	XBRKON		
A2	XSVEMG	B2	BRKDLY		
АЗ	XMCCON	ВЗ	MON 1		
Α4	XPCON	В4	KM20N		

CRS36 D2100D (Y)					
A 1	+24T	В1	TPESP21		
A2	+24T	B2	TPESP2		
АЗ	TPEN2	В3	TPESP11		
Α4	TPEN1	В4	TPESP1		
Α5	TPDSC	B5	0.0		
Α6	0 V	В6	0 V		
Α7	XTXTP	В7	TXN_TP		
A8	TXTP	88	TXP_TP		
Α9	XRXTP	В9	RXN_TP		
A10	RXTP	B10	RXP_TP		

CRRA8

D3200S (X)					
1	200A				
2	200B				
3	200FAN				

CNMC6

D3200S (Y)					
1	200R				
2	2008				
Э	200T				
4	AC1				
5	AC2				
6	AC3				

CRRA12

D3200S (Z)					
1 PCM1					
PCM2					
3 РСМЗ					

CNMC5

D2100D (X)					
A 1	AUX24	В1	AUX24		
A2	AUX23	B2	AUX23		
АЗ	AUX14	вз	AUX14		
Α4	AUX13	В4	AUX13		
Α5	+24E	B5	MONKM1		
A6	0 V	В6	MONKM2		
Α7	MCC10N	В7	MCC20N		
A8	0 V	В8	MONKA		

- 280 -

R-30 iB E-STOP Board Connector Table For B-cabinet

JD1A PCR20

1	RXSILD2	11	٥٧
2	XRXS1LD2	12	٥v
3	TXSILD2	13	٥v
4	XTXSILD2	14	٥v
5		15	٥v
6		16	٥v
7		17	
8		18	+5٧
9	+5٧	19	
10		20	+5٧

JRS19 PCR20

1	RXTP	11	RXP_TP		
2	XRXTP	12	RXN_TP		
3	TXTP	13	TXP_TP		
4	XTXTP	14	TXN_TP		
5	ON	15	СОМ		
6	OFF	16	٥v		
7	RXSILDI	17			
8	XRXSILDI	18			
9	TXSILDI	19			
10	XTXSILDI	20			

CRP24/CP5A D3500D

035000						
A 1	+24E	В1	0 V			
A2	+24E	B2	0 V	CP5A		
АЗ	+24E	ВЗ	0 V	\cup		
A4	\mathbb{X}	В4	\mathbb{X}			
A5	+24E	B5	0 V	CRP2		
A6	+24٧	В6	0 V			

CRMA96 D2100D (X)

D2100D(X)					
A 1	NTED1	В١	NTEDII		
A2	NTED2	В2	NTED21		
ΑЗ	DM1	вз	DM2		

CRMA74 D2100D (Y)

A1 MONKA1		ВΊ	BRKDLY		
A2	A2 SVON11		SVONI		
ΑЗ	SVON21	ВЗ	SVON2		
A4	24E-2	В4	MONKMI		
A5	0 V	B5	MONKM2		
A6	FANOFF	В6	MONKA		

CRMA93 D1200D (X)

D1200D (X)			
A 1	+24E	В١	0 V
A2	OPD I 1	B2	OPD01
ΑЗ	OPD12	вз	OPD02
A 4	0PD13	В4	OPD03
A5	OPD14	B5	OPDO4
A6 OFF1 B6 OFF11			

CRMA83 D1200D (Y

D1200D (Y)				
A 1	+24E	ВΙ	٥٧	
A2	OPD15	В2	OPD I 10	
ΑЗ	OPD16	вз	OPD I I I	
Α4	OPD17	В4	OPD 12	
A5	0PD18	B5	OPDI13	
A6	OPD 1 9	В6		

CNMC3 2100D (X

D2100D (X)			
A 1	KA31	В١	KA32
A2	KA41	B2	KA42
АЗ	0 V	вз	0 V
A4	+24V	В4	KM20N
A5	AUX 1 1	B5	AUX12
A6	AUX21	В6	AUX22
A7	AUX24	В7	AUX24
A8	AUX23	В8	AUX23
A9	AUX 14	В9	AUX14
A 1 0	AUX13	B10	AUX13

TBOP11 TERMINAL

1	EES1	Н
2	EES11	\vdash
3	EES2	Н
4	EES21	H.
5	EAS1	Н
6	EAS11	۲
7	EAS2	Н
8	EAS21	H
9	EGS1	Н
10	EGS11	H
11	EGS2	Н
12	EGS21	\vdash
13	EXOFF1	\vdash
14	EXOFF11	\vdash

TBOP10 TERMINAL 1 AUX13

2	AUX14	
3	AUX23	
4	AUX24	
5	AUX11	
6	AUX12	
7	AUX21	
8	AUX22]
9	ESPB1	
10	ESPB11]
11	ESPB2	1
12	ESPB21	1
13	EXT24V	Н
14	INT24V	H
15	INTOV	Н
16	EXTOV	Н
	3 4 5 6 7 8 9 10 11 12 13 14	3 AUX23 4 AUX24 5 AUX11 6 AUX12 7 AUX21 8 AUX22 9 ESPB1 10 ESPB11 11 ESPB2 12 ESPB21 13 EXT24V 14 INT24V 15 INTOV

CRT27 D2100D (Y)

52:005 (:)			
A 1	24E-2	В١	0 V
A2	24E-2	В2	HM1
ΕА	AUTO1B	вз	AUTO2B
A4	MODE 1B	В4	MODE 2B
A5	OPESP1	B5	OPESP11
A6	OPESP2	В6	OPESP21
A7	PDO 1 (BUSY)	В7	PD 1 (FAULT RESET)
A8	PDO2 (FAULT)	В8	PD12 (CYCLE START)

CRMA92

D2100D (X)				
A 1	MON2	В١	XBRKON	
A2	XSVEMG	B2	BRKDLY	
ΕА	XMCCON	ВЗ	MON 1	
A4 XPCON B4 KM2ON				
•				

CONNECTOR ON THE SAFETY I/O BOARD CRMA90 D1000D(X)

D1000D (X)			(///
A 1	+24E	В1	0 V
A2	SFD[11	B2	SFD121
АЭ	SFDI12	ВЗ	SFD122
A4	SFDI13	В4	SFD123
A5	SFDI14	B5	SFD124
A6	SFDI15	В6	SFD125
Α7	SFDI16	В7	SFD126
A8	SFDI17	В8	SFD127
A9	SFDI18	В9	SFD128
A 1 0		B10	
A 1 1	SFD011	B11	SFD021
A12	SFD012	B12	SFD022
A13	SFD013	B13	SFD023
A 1 4	SFD014	B14	SFD024
A 1 5	SFD015	B15	SFD025
A 1 6	SFD016	B16	SFD026
A17	SFD017	B17	SFD027
A 1 8	SFD018	B18	SFD028
A 1 9	٥٧	B19	0 V
A20	٥٧	B20	0 V

CP2A

D3200H (11)			
A 1	200A	В١	200A
A2	200B	B2	200B
АЗ	200FAN	вз	200FAN

CNMC6 D3200S (Y)

1 200R 2 200S 3 200T 4 AC1 5 AC2 6 AC3	D32005 (Y)		
3 200T 4 AC1 5 AC2	1	200R	
4 AC1 5 AC2	2	2008	
5 AC2	3	2001	
	4	AC1	
6 AC3	5	AC2	
	6	AC3	

CNMC7 D32005 (

D3200S (X)	
1	COILI
2	COIL2
3	COILC

CRRA12 D3200S (Z

D3200S (Z)		
1	PCM1	
2	PCM2	
3	РСМ3	

CRS36 D2100D (Y)

	D2100D (Y)					
A 1	+24T	ВΊ	TPESP21			
A2	+24T	B2	TPESP2			
ΑЗ	TPEN2	вз	TPESP11			
Α4	TPENI	В4	TPESPI			
Α5	TPDSC	B5	0 V			
A6	0 V	В6	0٧			
Α7	XTXTP	В7	TXN_TP			
8A	TXTP	В8	TXP_TP			
6 A	XRXTP	В9	RXN_TP			
A 1 O	RXTP	B10	RXP_TP			

Fig.B (n) Emergency stop board connector table (B-cabinet)

Fig.B (o) Main board connector table

JD1A I/O Link (Main Board - I/O Device)

ì	RXSLCA	11	0 V
2	XRXSLCA	12	0 V
3	TXSLCA	13	0 V
4	XTXSLCA	14	0 V
5		15	0 V
6		16	0 V
7		17	
8		18	+5٧
9	+57	19	+24E
10	+24E	20	+51

JRS19 ON-OFF/TP/|O LINK i (Main Board - E-STOP Board)

	508.0	- '	J. O. DO.
1	RXTP	11	RXP_TP
2	XRXTP	12	RXN_TP
3	TXTP	13	TXP_TP
4	XTXTP	14	TXN_TP
5	ON	15	COM
6	OFF	16	0 V
7	RXSILC1	17	
8	XRXSILC1	18	
9	TXSILCI	19	
10	XTXSILCI	20	
10	XTXSILCI	20	

BAT1 Batter (Main Bo

	rd - Ba		3	2	1	
1	VBAT	A	CAMDO4	XSDATA	SDATA	
2	0 V	В	CAMD05S	0.0	+24E	
						•

JD17 RS-232-C & LVC (Main Board - Serial Device/LVC)

1	RXDB	11	TXDB
2	0 V	12	0 V
3	DSRB	13	DTRB
4	0 V	14	0 V
5	CTSB	15	RTSB
6	0 V	16	0 V
7	RXLVC	17	TXLVC
8	XRXLVC	18	XTXLVC
9	+5٧	19	+24E
10	+24E	20	+51
	3 4 5 6 7 8	2 OV 3 DSRB 4 OV 5 CTSB 6 OV 7 RXLVC 8 XRXLVC 9 +5V	2 0V 12 3 DSRB 13 4 0V 14 5 CTSB 15 6 0V 16 7 RXLVC 17 8 XRXLVC 18 9 +5V 19

JRS16 RS232-C/USB (Main Board - Panel)

	508.	•	1 611617
1	RXDA	11	TXDA
2	0 V	12	0 V
3	DSRA	13	DTRA
4	٥٧	14	0 V
5	CTSA	15	RTSA
6	0 V	16	0 V
7	USB_5V	17	USB_P
8	USB_0V	18	USB_M
9		19	+24E
10	+24E	20	

CD38A Ethernet 100Base-TX (Main Board- Network)

1	TPTXA+
2	TPTXA-
3	TPRXA+
4	NCA1
5	NCA1
6	TPRXA-
7	NCA2
8	NCA2

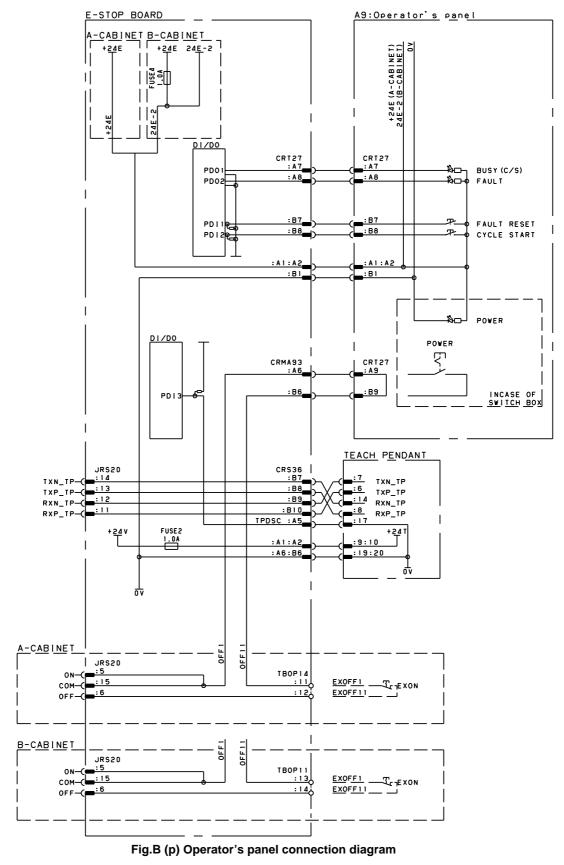
CD38B Ethernet 100Base-TX (Main Board- Network)

1	TPTXB+	
2	TPTXB-	
m	TPRXB+	
4	NCB1	
5	NCB1	
6	TPRXB-	
7	NCB2	
8	NCB2	

CD38C Ethernet 100Base-TX (Main Board- Network)						
	1	TPTXC+	1			
	2	TPTXC-				
	3	TPRXC+				
	4	NCC1				
	5	NCC1				
	6	TPRXC-				
	7	NCC2				
	8	NCC2				

CRS35 FORCE SENSOR

JRL8 HDI I/O Link


1 8	a i n	Board -	- 1,	/O Devid
	1	RXSLCB	11	XHDIO
	2	0 V	12	0.0
	з	XRXSLCB	13	XHD I 1
	4	0 V	14	0.0
	5	TXSLCB	15	XHD12
	6	RXSLCC	16	0.0
	7	XTXSLCB	17	XHD13
	8	XRXSLCC	18	0.0
	9	TXSLCC	19	XHD I 4
	10	XTXSLCC	20	0.0

JRL7 Sensor interface (Video Interface)

(Video interrace)				
1	XVD	11	CAMD02	
2	٥٧	12	0 V	
Э	XHD	13	CAMD03	
4	٥٧	14	0 V	
5	XTRIG	15	CAMDII	
6	٥٧	16	CAMD12	
7	VIDEOIN	17	CAMDIO	
8	٥٧	18	CAMDOO	
9		19	P12V	
10	٥٧	20	C AMDO 1	

MAIN BOARD

R-30iB E-STOP Board diagram

Operator's panel Connector Table (A-CABINET)

Operator's panel Connector Table (B-CABINET)

Teach pendant Connector Table

CRT27

D2100D (X)				
A 1	+24E	В1	٥٧	
A2	+24E	B2	HM1	
АЗ	AUT01B	вз	AUT02B	
A4	MODE1B	В4	MODE2B	
A5	OPESP1	B5	OPESP11	
A6	OPESP2	В6	OPESP21	
Α7	PDO1 (BUSY)	В7	PDI1 (FAULT RESET)	
A8	PDO2 (FAULT)	В8	PD I 2 (Cycle Start)	
A9	OFF1	В9	OFF11	
A 1 0		B10		

CRT28

D2100D (X)								
A 1	+24E	В1	0.0					
A2	AUT01B	B2	AUT02B					
АЗ	MODE 1B	вз	MODE2B					

CRP5 D2100S (X) +24E 0 V HM1

	CR ⁻ D2100	T27 DD ()	K)
A 1	24E-2	В1	0.0
A2	24E-2	B2	HM1
АЗ	AUT01B	вз	AUT02B
A4	MODE 1B	В4	MODE2B
A5	OPESP1	B5	OPESP11
A6	OPESP2	В6	OPESP21
Α7	PDO1 (BUSY)	В7	PDI1 (FAULT RESE
A8	PDO2 (FAULT)	В8	PDI2 (Cycle Star)
A9	OFF1	В9	OFF11
A 1 0		B10	

CRT28 D2100D (X) A1 24E-2 B1 0V
A2 AUT01B B2 AUT02B
A3 MODE1B B3 MODE2B

CRP5 D2100S (X) 1 24E-2 2 ٥٧ 3 HM1

CONNECTOR ON THE TEACH PENDANT											
		4		Э		2		1			
10	+24T	9	+24T	8	RXP_TP	7	TXN_TP	6	TXP_TP	5	DRAIN
16	TPESP21	15	TPESP2	14	RXN_TP	13	TPESP11	12	TPESP1	1 1	TPEN1
		20	0 V	19	0 V	18	TPEN2	17	TPDSC		

Fig.B (q) Operator's panel/Teach pendant connector table

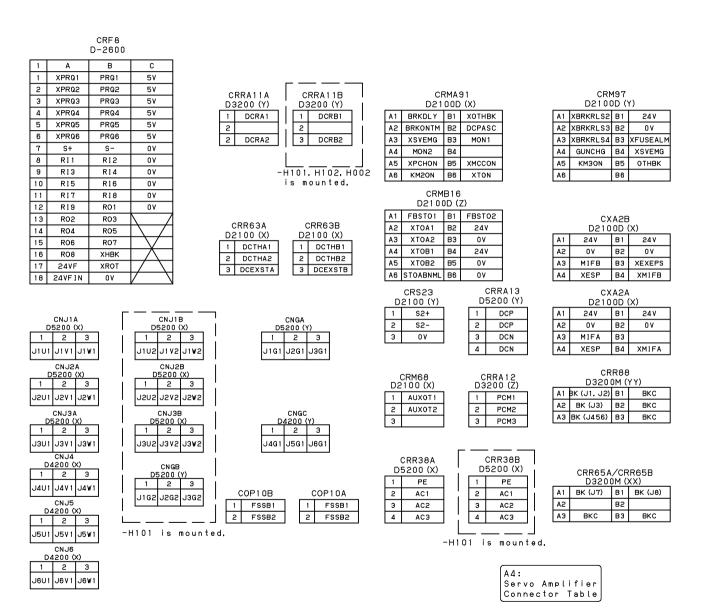
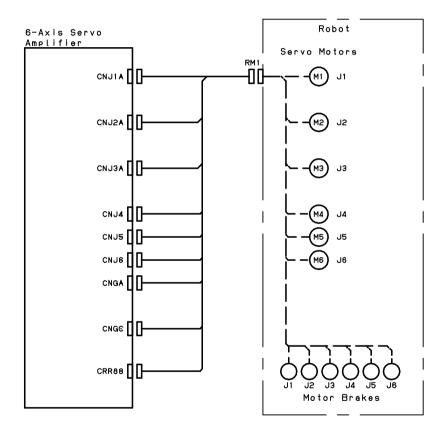



Fig.B (r) Servo amplifier connector table

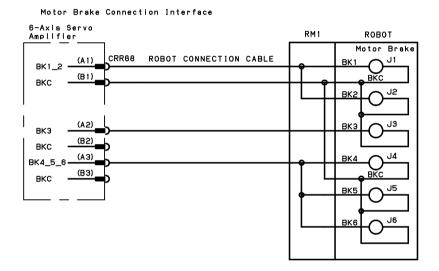
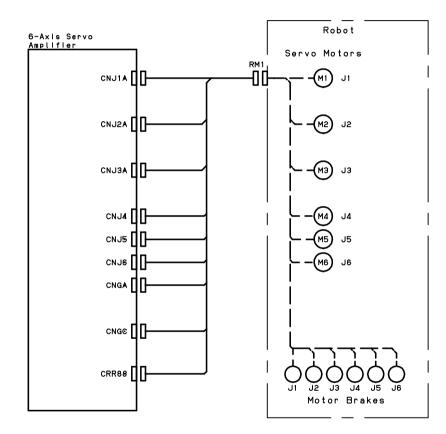



Fig.B (s) Motor power connection (Group1, Group11)
Group1: R-2000*i*B(except /200T,220U,220US), R-2000*i*C, R-1000*i*A,M-710*i*C,M-420*i*A,M-421*i*A
Group11: M-2*i*A,M-3*i*A

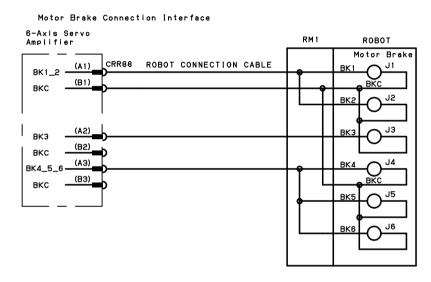
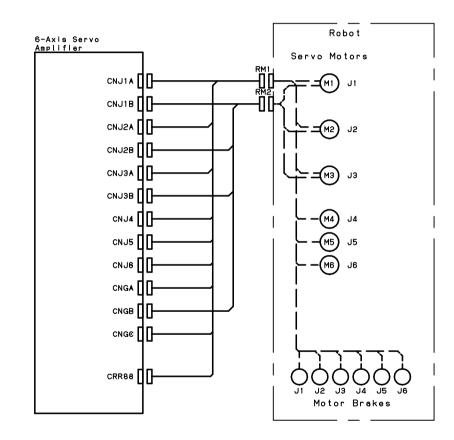



Fig.B (t) Motor power connection (Group2)

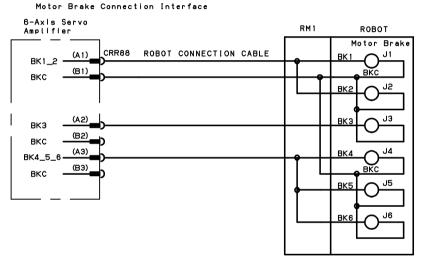
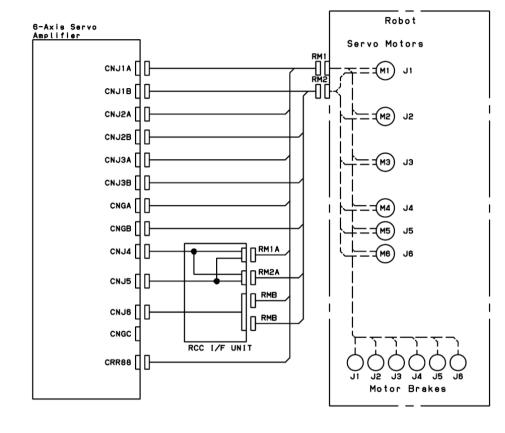



Fig.B (u) Motor power connection (Group3) R-2000/B/200T,220U,220US,M-410/B

APPENDIX

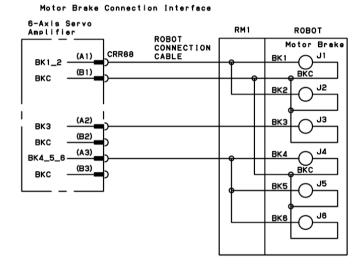
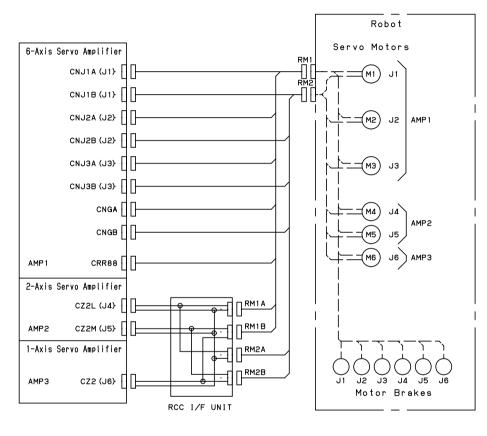
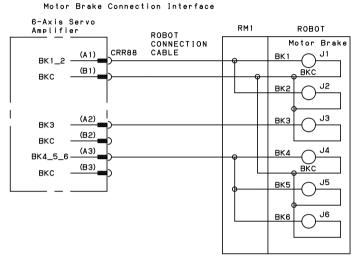




Fig.B (v) Motor power connection (Group4) M-900;A/150P,260L,350

RM1 A				RM2A			RMB		
	Α	В		Ι	Α	В		Α	В
1	J4U	J5U] [ı	J4U	J5U	1	J6U	Jeu
2	J4V	J5V	[2	2	J4V	J5V	2	J6V	767
3	J4W	J5W		3	J4W	J5 ₩	3	J6 W	J6W

Re	lat	ion	οf	axis

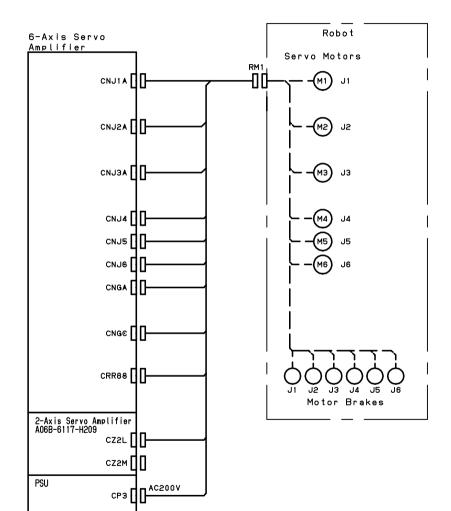
	Axis(j)	Motor number	Connector of AMP
1	1	J1	6 axis amplifier (AMP1): CNJ1
2	2	J2	6 axis amplifier (AMP1): CNJ2
3	3	ЛЗ	6 axis amplifier (AMP1): CNJ3
4	4	J4	2 axis amplifier (AMP2): CZ2L
5	5	J5	2 axis amplifier (AMP2): CZ2M
6	6	J6	1 axis amplifier (AMP3): CZ2

RM1A

	Α	В
1	J4U	J4G
2	J4V	J5G
3	J4W	J6G

RM1B

	Α	В	
ı	J5U	J6U	
2	J5V	J6V	
3	J5W	J6W	


	Α	В
1	J4U	J4G
2	J4V	J5G
3	J4W	J6G

RM2A

		Α	В
	1	J5U	J6U
	2	J5V	J6V
	3	J5W	J6W

RM2B

Fig.B (w) Motor power connection (Group5) M-900*i*A/400L,600,M-900*i*B/400L,700

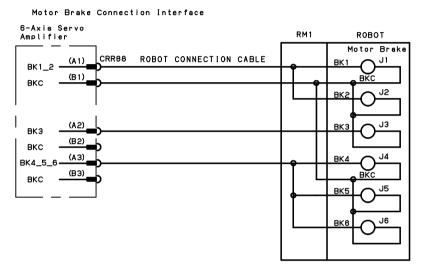


Fig.B (x) Motor Power Connection (group6; excluding M-430;A/2PH)
M-430;A/4FH

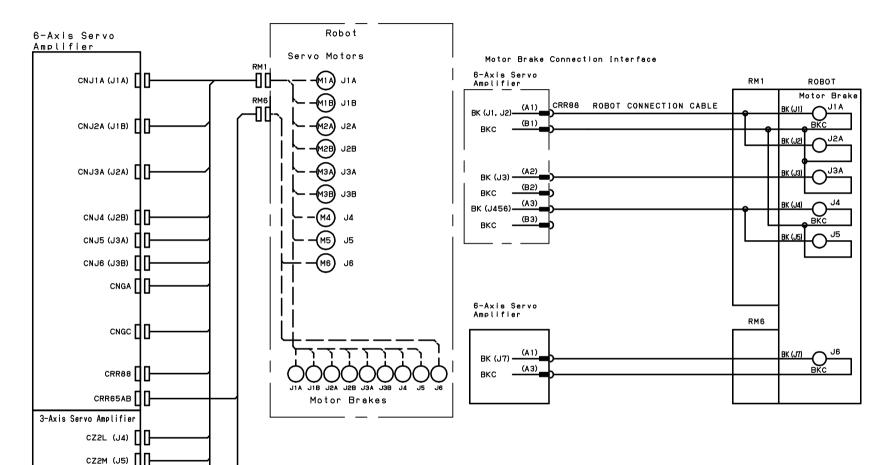
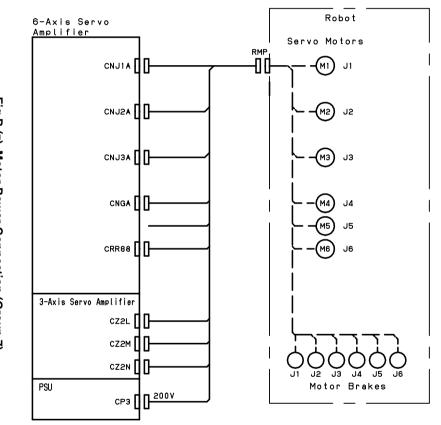



Fig.B (y) Motor Power Connection (group6)
M-430;A/2PH

CZ2N (J6)

CP3 AC200V

PSU

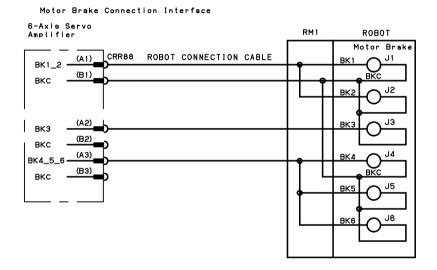
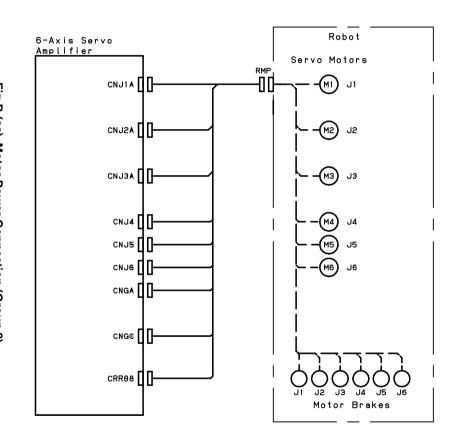



Fig.B (z) Motor Power Connection (Group 7)
M-430;A/2P

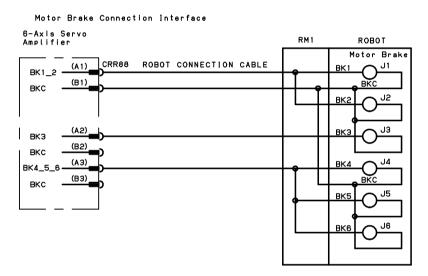


Fig.B (aa) Motor Power Connection (Group 8)
ARC Mate 100*i*C,ARC Mate 120*i*C,M-10*i*A,M-20*i*A,CR-35*i*A

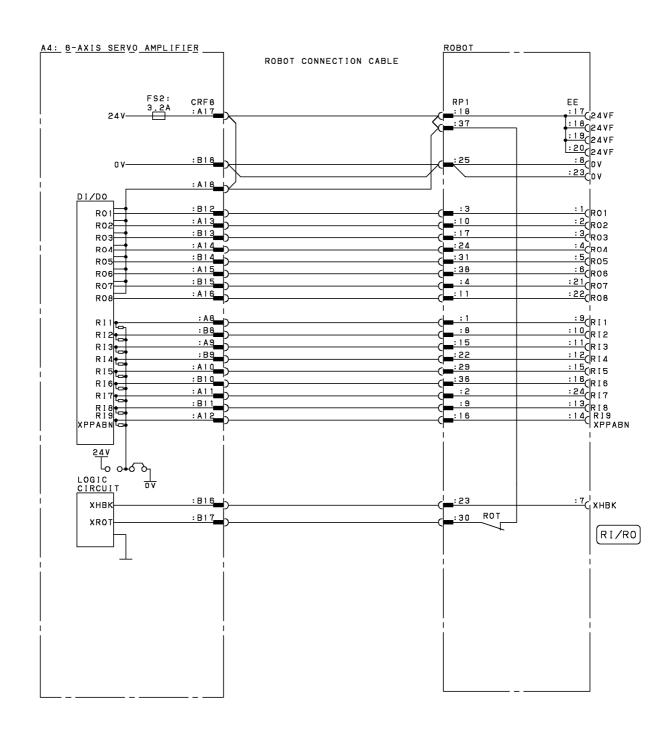


Fig.B (ab) RI/RO connection diagram (Group1 to 5)

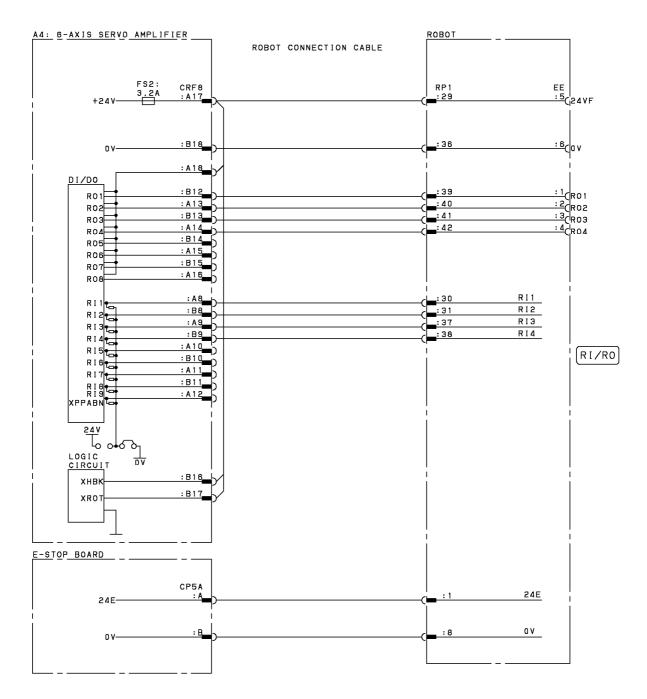


Fig.B (ac) RI/RO Connection Diagram (Group6; M-430iA/2PH,4FH)

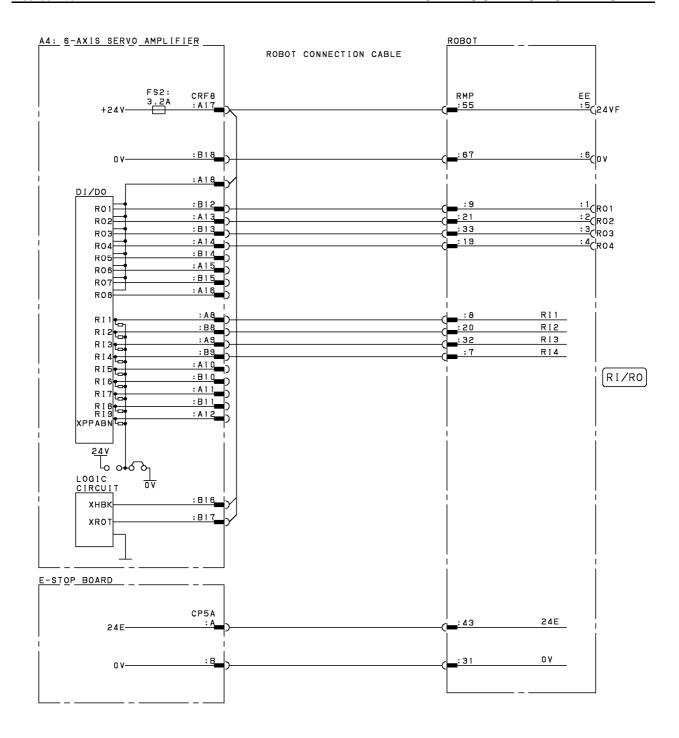


Fig.B (ad) RI/RO Connection Diagram (Group7; M-430iA/2P)

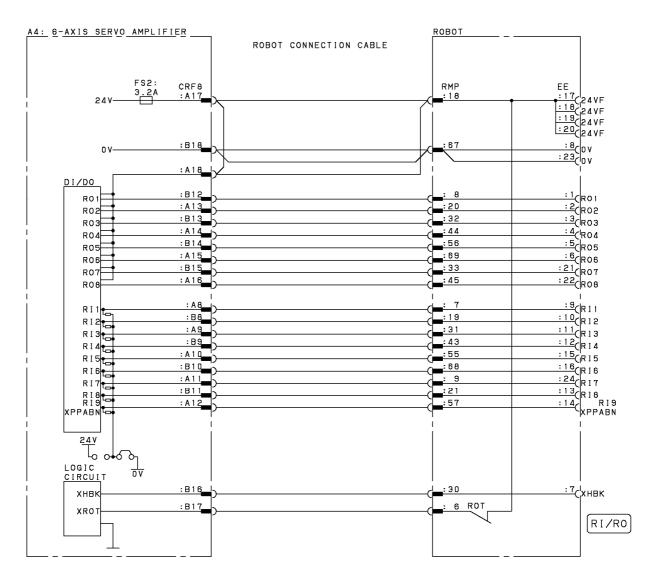


Fig.B (ae) RI/RO Connection Diagram (Group8; ARC Mate 100iC, ARC Mate 120iC)

There are many type EE connector of mechanical unit.
The detail is shown on the mechanical unit manual.

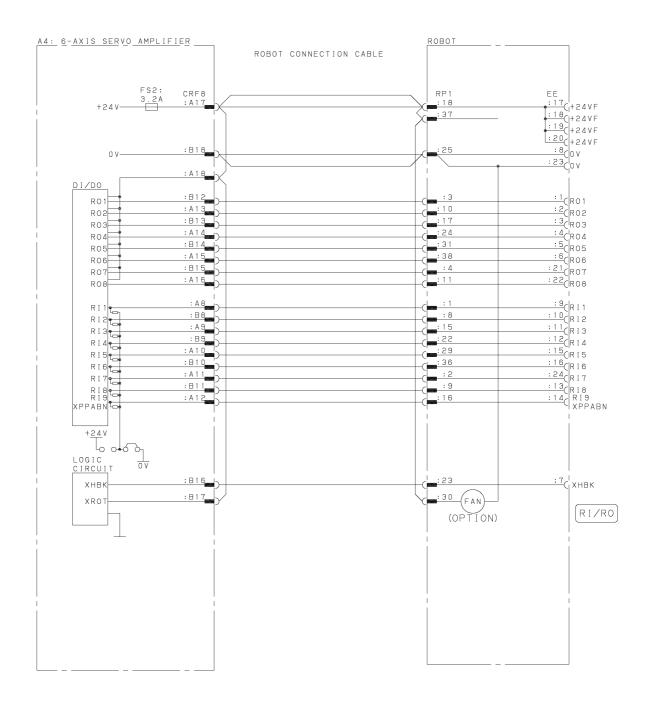


Fig.B (af) RI/RO Connection Diagram (Group11; M-2iA,M-3iA)

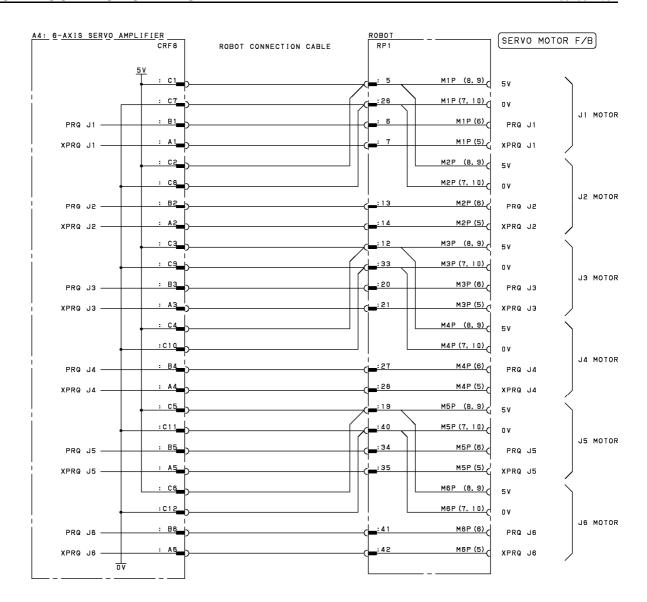


Fig.B (ag) Pulsecoder signal connection diagram (Group1 to 4, 11)

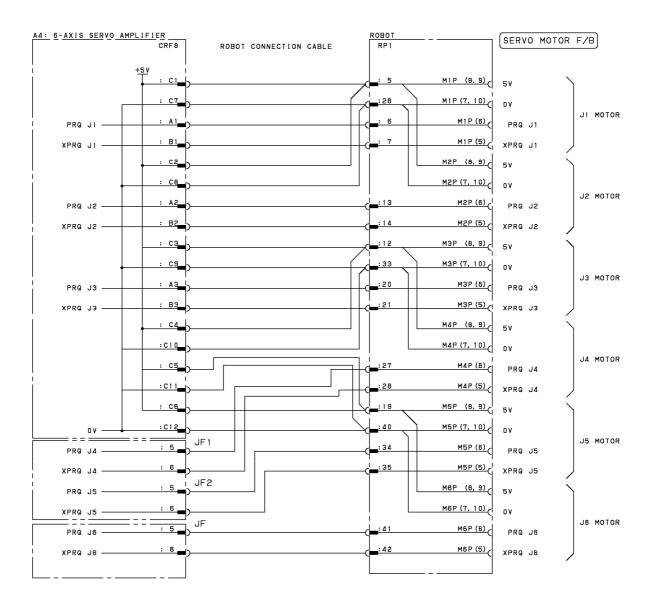


Fig.B (ah) Pulsecoder Signal Connection Diagram (Group5; M-900iA/400L,600,M-900iB/400L,700)

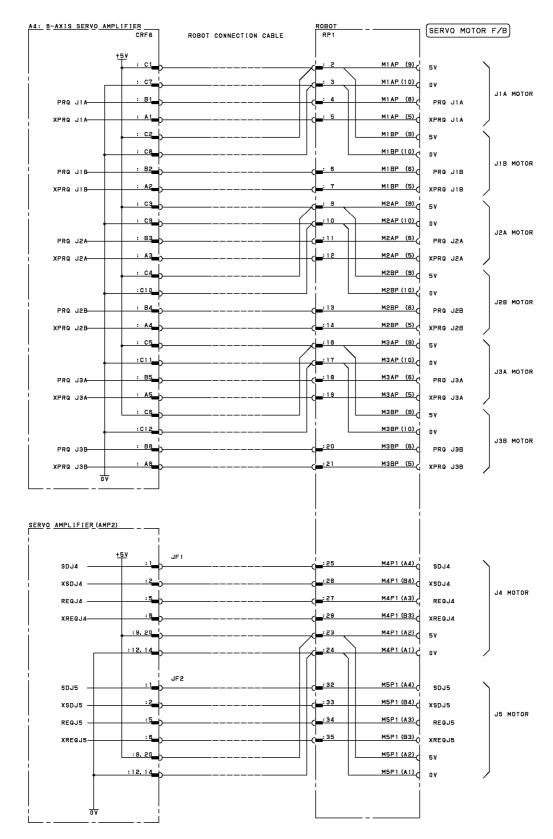


Fig.B (ai) Pulsecoder Signal Connection Diagram (group6; excluding M-430iA/2PH)

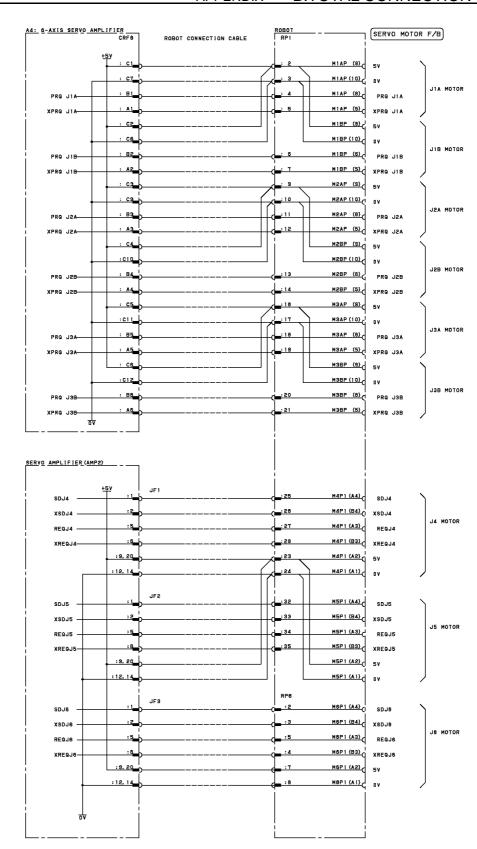


Fig.B (aj) Pulsecoder Signal Connection Diagram (group6; M-430iA/2PH)

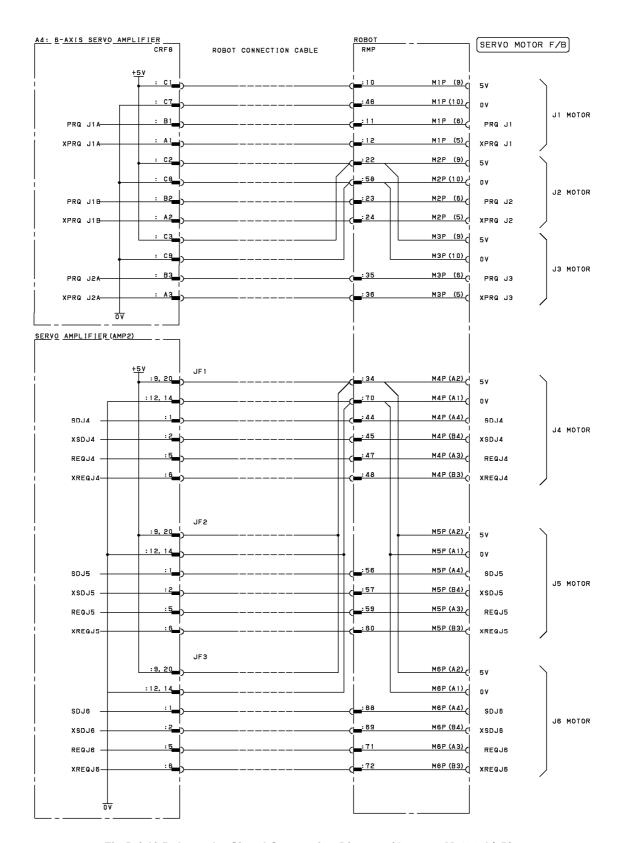


Fig.B (ak) Pulsecoder Signal Connection Diagram (Group7; M-430iA/2P)

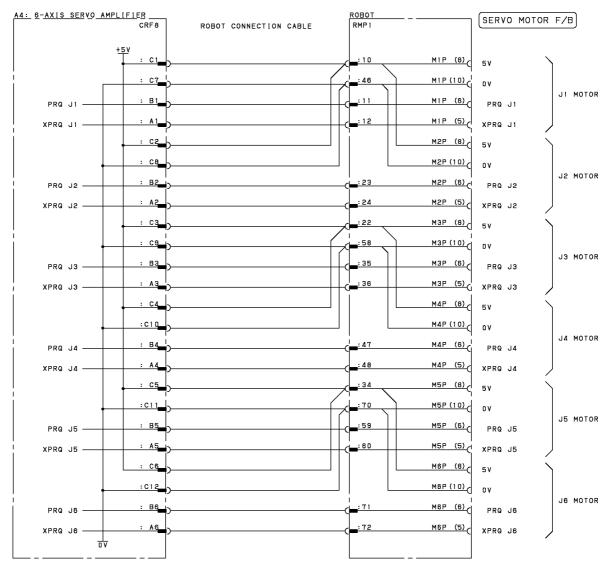


Fig.B (al) Pulsecoder Signal Connection Diagram (Group8; ARC Mate 100iC, ARC Mate 120iC)

J5G J6G

24VF-3

R06

S2-

PRQJ6

J2G1

J3G1

J4G

Group2

RP1

(Pulsecoder Feedback Signal & RI/RO)

26

RM1 (MOTOR Power & Brake)

R14 29 RI5

XHBK 30 XROT

R04

PRQJ4

J2V1 30 J2W1

J3V1

J4V 32 J4W

J6V 34

31 R05

32 s2+

33

PRQJ5

XPRQJ4 35 XPRQJ5 42 XPRQJ6

29 J1W1

J3W1

J5₩

J6W

RI3

RI9

R03

24VF - 1 24VF - 2

PRQJ3

J1U1

J2U1

J3U1

J4U

J5U

J6U

J2U1 28 J2V1 35 J2W1 42

Mechanical Unit Interface Group2

F-200*i*B

XPRQJ3 28

RI2

R18

R08

BKC

ВКС

BKC

ВКС

BKC

ВКС

PRQJ2 20

12

7 XPRQJ1 14 XPRQJ2 21

RO1 10 R02

R07

PRQJ1

BRK2P

BRK3P

BRK4P

BRK5P

BRK6P 13

Group 1

RP1

RI3 22 RI4

RI9

R03

PRQJ3

J1V1

J2V1

J3V1

J3V1

J6V

BK2

Mechanical Unit Interface Group1 R-2000iB (except/200T,220U,220US),R-2000iC,

R-1000iA,M-710iC,M-420iA,M421iA

7 XPRQJ1 14 XPRQJ2 21 XPRQJ3 28 XPRQJ4 35 XPRQJ5

R12

R18

R02

R08

PRQJ2

J1U1

J1U1

J2U1

J2U1

J3U1

J3U1

J4U

J5U

BK1

BKC

BKC

10 J6U

12

RI7

R01

R07

PRQJ1

5

Fig.B (am) Mechanical unit interface (Group1, Group2)

(Pulsecoder Feedback Signal & RI/RO)

24 RO4 31 R05

25

26

RM1 (MOTOR Power & Brake)

хнвк

27 PRQJ4 34

J1W1

J2W1

J3W1

J3W1

ВКЗ

R15

XROT

S2+

JIGI

JIGI

J2G1

J2G1

J3G1

J3G1

J4G

J6G

BK4

BK5

33

24VF-3

R06

s2-

PRQJ6

	201																	
RP1 (Pulsecoder Feedback Signal & RI/RO)																		
1	RII		8	RIZ	2	15	F	R13	22		R14	29	R15	:	36	R	16	
2	RIT	7	9	RI	3	16	F	२। 9	23	×	HBK	30	XROT	:	37	240	F-3	
3	RO1		10	RO	2	17	F	RO3	24	ı	R04	31	R05	:	38	R	06	
4	ROT	7	11	RO	3	18		IVF - I IVF - 2	25		0V-1	32	\$2+	:	39	Sá	2 -	
5	5V-		12	5V- 5V-		19		5V-5 5V-6	26		0V-3 0V-4	33	0V-5 0V-6	1	40		-7 -8	
6	PRQ	J1_	13	PRQ	15	20	Pf	30J3	27	PI	RQJ4	34	PRQJ5	, ,	41	PRO	3J6	,
7	XPRQ	J1	14	XPRQ	J2	21	ХP	RQJ3	28	XF	RQJ4	35	XPRQJ!	5 4	42	XPR	QJ	6
	((MO1	ror	RM Powei		Bra	ake)					R (MOTOR	M2 P	owe	·r)		
1 [(—	_	Power	. &)	7	1		<u> </u>	(MOTOR	? P	owe	<u> </u>	34	
\rightarrow		14	OR J1	Power 71 24	- & J1	Bra W1	34]	1 2	SULL	14	J1V2	24	owe	w2	34 35	JIG
2	J1U1 J1U1	—	_	Power /1 24	- & J1			J1G1		1 2 3	J1U2 J1U2	14	J1V2	? P	owe	w2	34 35 36	
2	J1U1	14	JIV	Power /1 24 /1 25	- & J1 J1	W 1	34 35	J1G1		2		Ш	J1V2	24	J1	w2 w2	35	J1G2
1 2 3 4	J1U1 J1U1	14	JIV	Power /1 24 /1 25 /1 26	J1 J2	W 1	34 35 36	J1G1		2	J1U2	15	J1 V2 J1 V2 J2 V2	24 25	J11	w2 w2	35 36	J1G2 J2G2
2 3 4	J1U1 J1U1 J2U1	14 15 16	J11 J21 J21	Power /1 24 /1 25 /1 26 /1 27	J1 J1 J2	W 1 W 1 PW 1	34 35 36 37	J1G1 J1G1 J2G1		2 3 4	J1U2 J2U2	15 16	J1V2 J1V2 J2V2	24 25 26 27	J11 J11 J21 J21	w2 w2 w2	35 36 37	J1G2 J2G2 J2G2
2 3 4 5	J1U1 J1U1 J2U1 J2U1	14 15 16 17	J11 J21 J21 J31	Power 24	J1 J1 J2 J2	W 1 W 1 PW 1 PW 1	34 35 36 37 38	J1G1 J1G1 J2G1 J2G1		2 3 4 5	J1U2 J2U2 J2U2	15 16 17	J1V2 J1V2 J2V2 J2V2 J3V2	24 25 26 27 28	J11 J21 J21 J31	w2 w2 w2 w2	35 36 37 38	J1G2 J2G2 J2G2 J3G2
2 3 4 5 6	J1U1 J1U1 J2U1 J2U1 J3U1	14 15 16	J11 J21 J21	Power 24	J1 J1 J2 J2	W 1 W 1 PW 1	34 35 36 37 38 39	J1G1 J1G1 J2G1 J2G1 J3G1		2 3 4 5 6	J1U2 J2U2 J3U2	15 16 17 18	J1V2 J1V2 J2V2 J2V2 J3V2	24 25 26 27 28	J11 J11 J21 J21	w2 w2 w2 w2	35 36 37 38 39	J1G2 J2G2 J2G2 J3G2
2 3 4 5 6 7	J1U1 J1U1 J2U1 J2U1 J3U1 J3U1	14 15 16 17	J11 J21 J21 J31	Power /1 24 /1 25 /1 26 /1 27 /1 28 /1 29	J1 J2 J2 J2 J3	W 1 W 1 PW 1 PW 1	34 35 36 37 38 39	J1G1 J1G1 J2G1 J2G1 J3G1 J3G1		2 3 4 5 6 7	J1U2 J2U2 J3U2	15 16 17	J1V2 J1V2 J2V2 J2V2 J3V2	24 25 26 27 28	J11 J21 J21 J31	w2 w2 w2 w2 w2	35 36 37 38 39	J1G2 J2G2 J2G2 J3G2
2 3 4 5 6 7 8 9	J1U1 J1U1 J2U1 J2U1 J3U1 J3U1 J4U	14 15 16 17 18	J11 J21 J21 J31	Power /1 24 /1 25 /1 26 /1 27 /1 28 /1 29 / 30	J1 J2 J3 J3	W 1 W 1 PW 1 PW 1 BW 1	34 35 36 37 38 39 40 41	J1G1 J1G1 J2G1 J2G1 J3G1 J3G1 J4G		2 3 4 5 6 7 8	J1U2 J2U2 J3U2	15 16 17 18	J1V2 J2V2 J2V2 J3V2 J3V2	24 25 26 27 28	J11 J21 J21 J31	w2 w2 w2 w2 w2	35 36 37 38 39 40 41	J1G2 J2G2 J2G2 J3G2
2 3 4 5 6 7 8 9	J1U1 J1U1 J2U1 J2U1 J3U1 J3U1 J4U J5U	14 15 16 17 18	J11 J21 J21 J31 J31 J4	Power V1 24 V1 25 V1 26 V1 27 V1 28 V1 29 V 30 V 31	J1 J2 J2 J3 J3 J3 J4	W1 W1 PW1 PW1 BW1 BW1 BW1	34 35 36 37 38 39 40 41 42	J1G1 J1G1 J2G1 J2G1 J3G1 J3G1 J4G J5G		2 3 4 5 6 7 8 9	J1U2 J2U2 J3U2	15 16 17 18 19 20	J1V2 J1V2 J1V2 J2V2 J2V2 J3V2 J3V2	24 25 26 27 28 29	J11 J21 J21 J31	w2 w2 w2 w2 w2	35 36 37 38 39 40 41	J162 J262 J262 J362
2 3 4 5 6 7 8	J1U1 J1U1 J2U1 J2U1 J3U1 J3U1 J4U J5U J6U	14 15 16 17 18 19	J11 J21 J21 J31 J31	Power 24 25 27 26 27 27 28 29 29 29 29 29 29 29	3	W 1 W 1 PW 1 PW 1 BW 1 BW 1	34 35 36 37 38 39 40 41 42	J1G1 J2G1 J2G1 J3G1 J3G1 J4G J5G		2 3 4 5 6 7 8 9	J1U2 J2U2 J3U2	15 16 17 18 19 20 21	J1V2 J1V2 J1V2 J2V2 J2V2 J3V2 J3V2	24 25 26 27 28 29 30	J11 J21 J21 J31	w2 w2 w2 w2 w2	35 36 37 38 39 40 41 42	J162 J162 J262 J262 J362

Fig.B (an) Mechanical unit interface (Group3, Group4)

Mechanical Unit Interface Group3 R-2000 i B/200T, 220U, 220US, M-410 i B RP1 (Pulsecoder Feedback Signal & R1/R0)

Group4

1	RI1	8	R12	15	R13	22	RI4	29	R15	36	R16
2	RI7	9	R18	16	RI9	23	XHBK	30	XROT	37	24VF-3
3	RO1	10	R02	17	R03	24	RO4	31	R05	38	R06
4	R07	11	R08	18	24VF-1 24VF-2	25	0V-1 0V-2	32	\$2+	39	S2-
5	5V-1 5V-2	12	5V-3 5V-4	19	5V-5 5V-6	26	0V-3 0V-4	33	0V-5 0V-6	40	0V-7 0V-8
6	PRQJ1	13	PRQJ2	20	PRQJ3	27	PRQJ4	34	PRQJ5	41	PRQJ6
7	XPRQJ1	14	XPRQJ2	21	XPRQJ3	28	XPRQJ4	35	XPRQJ5	42	XPRQJ6

RM1 (MOTOR Power & Brake)

$\overline{}$						$\overline{}$	
1		14	J171	24	JIWI	34	
2	J1U1	ļ.,			•	35	J1G1
3	J1U1	15	J1V1	25	J1W1	36	J1G1
4	J2U1	16	J2V1	26	J2W1	37	J2G1
5	J2U1	17	J2V1	27	J2W1	38	J2G1
6	J3U1	18	J3V1	28	J3W1	39	J3G1
7	J3U1	Ш		\vdash		40	J3G1
8	J4U1	19	J3V1	29	J3W1	41	J4G1
9	J5U1	20	J4V1	30	J4W1	42	J5G1
10	J6U1	21	J5 V 1	31	J5W1	43	J6G1
11	BK1	22	J6V1	32	J6W1	44	BK4
12	BKC	Ш		\vdash		45	BK5
13	BKC	23	BK2	33	ВК3	46	BK6
		•				_	

RM2 (MOTOR Power)

1		14	J172	24	J1W2	34	
2	J1U2	Ш		\vdash		35	J1G2
3	J1U2	15	J1V2	25	J1 W 2	36	J1G2
4	J2U2	16	J2V2	26	J2 W 2	37	J2G2
5	J2U2	17	J2V2	27	J2W2	38	J2G2
6	J3U2	18	J3V2	28	J3W2	39	J3G2
7	J3U2			1		40	J3G2
8	J4U2	19	J3V2	29	J3W2	41	J4G2
9	J5U2	20	J4V2	30	J4 W 2	42	J5G2
10	J6U2	21	J5V2	31	J5 W 2	43	J6G2
1 1		22	J6V2	32	J6W2	44	
12		22	5512	\perp	00#2	45	·
13		23		33		46	

Mechanical Unit Interface Group4 M-900iA/260L, 350, 150P

24VF

RI2

SDJ5

XSDJ5

REQJ5

XREQJ5

29 J1AG1

J2AG1

J2BG1

J3AG1

J3BG1

J4G1

30 RI1

SDJ4

XSDJ4

REQJ4

J1AW1

J1BW1

J2AW1

J2BW1

J3AW1

J3BW1

J4W1

36

37

38

42

36 J5U1

38

39

R13

RI4

R03

R04

J5W1

J5G1

41 AC200A

42 AC200B

SDJ6

RM6 (MOTOR Power & Brake)

In case of M-430iA/2PH, this connectors are added. RP6 (Pulsecoder Feedback Signal)

Group6

RP1

(Pulsecoder Feedback Signal & RI/RO)

5V (J2A, J2B) 16 5V (J3A, J3B) 23 5V (J4, J5)

18 PRQJ3A

20 PRQJ3B

J1AV1

J1BV1

J2AV1

J2BV1

J3AV1

J3BV1

J4V1

XSDJ6 2

XPRQJ3A 26

RM1 (MOTOR Power & Brake)

22

24

0V (J1A, J1B) | 1 0 | 0V (J2A, J2B) | 1 7 | 0V (J3A, J3B) | 2 4 | 0V (J4, J5)

XPRQJ1B 14 XPRQJ2B 21 XPRQJ3B 28 XREQJ4

15

24E (BLOWER)

5V (J1A, J1B)

PRQJ1A

BK (J1A) 8

BK (J2A)

ВК (ЈЗА)

BK (J4)

BK (J5)

OV (BLOWER)

PRQJ2A

13 PRQJ2B

J1AU1

J1BU1

J2AU1

J2BU1

J3AU1

J3BU1

J4U1

XPRQJ2A 19

ſ	C 1		C2		СЗ		C4		C5	
Ī	В1	BK (J6)	В2	вкс	ВЗ		В4		В5	
	A 1	J6U1	A2	J6 V 1	АЗ	J6W1	Α4	J6G1	Α5	

Mechanical Unit Interface Group6 M-430 | A/2PH, 4FH

Group5

RP1 (Pulsecoder Feedback Signal & RI/RO)

1	RI1	8	RI2	15	RI3	22	RI4	29	RI5	36	RI6
2	R17	9	R18	16	RI9 (XPPABN)	23	XHBK	30	XROT	37	24VF (OT)
3	RO1	10	R02	17	RO3	24	RO4	31	R05	38	R06
4	RO7	11	RO8	18	24VF	25	0 V	32		39	
5	5V (J1, J2)	12	5V (J3, J4)	19	5V (J5, J6)	26	0V (J1, J2)	33	0V (J3, J4)	40	0V (J5, J6)
6	PRQJ1	13	PRQJ2	20	PRQJ3	27	PRQJ4	34	PRQJ5	41	PRQJ6
7	XPRQJ1	14	XPRQJ2	21	XPRQJ3	28	XPRQJ4	35	XPRQJ5	42	XPRQJ6

R۱	
(MOTOR	Power

	(MOTOR Power & Brake)										
1		14	J1V1	24	J1W1	34					
Ω	J1U1	1 -		٥٦		35	J1G1				
3	J1U1	15	J1V1	25	J1W1	36	J1G1				
4	J2U1	16	J2V1	26	J2W1	37	J2G1				
5	J2U1	17	J2V1	27	J2W1	38	J2G1				
6	J3U1	18	J3V1	28	J3W1	39	J3G1				
7	J3U1	19		20		40	J3G1				
8	J4U1	19	J3V1	29	J3W1	41	J4G1				
9	J5U1	20	J4V1	30	J4W1	42	J5G1				
10	J6U1	21	J5 V 1	31	J5W1	43	J6G1				
1 1	BK (J1)	22	J6V1	32	J6W1	44	BK (J4)				
12	BKC	23		Ш		45	BK (J5)				
13	ВКС	23	BK (J2)	33	BK (J3)	46	BK (J6)				

1		1 4	J1V2	24	J1W2	34	
2	J1U2		0112		01112	35	J1G2
3	J1U2	15	J1V2	25	J1W2	36	J1G2
4	J2U2	16	J2V2	26	J2 W 2	37	J2G2
5	J2U2	17	J2V2	27	J2W4	38	J2G2
6	J3U2	18	J3V2	28	J3W3	39	J3G2
7	J3U2	1.0		20		40	J3G2
8	J4U2	19	J3V2	29	J3W4	41	J4G2
9	J5U2	20	J4V2	30	J4 W 2	42	J5G2
10	J6U2	21	J5V2	31	J5 W 2	43	J6G2
1.1		22	J6V2	32	J6W2	44	
12		23	0012	33	00112	45	
13		23		33		46	

Mechanical Unit Interface Group5 M-900iA/400L, 600, M-900iB/700

Fig.B (ao) Mechanical Unit Interface (Group5, Group6)

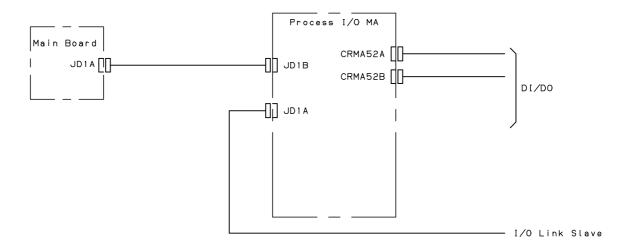
APPENDIX

RMP (Pulsecoder Feedback Signal & RI/RO) (MOTOR Power & Brake)

1	BK (J1)	13	BK (J2)	25	BK (J3)	37	BK (J4)	49	BK (J5)	61	BK (J6)
2	BKC	14	ВКС	26	AC200A	38	AC200B	50		62	
3	J1U1	15	J2U1	27	J3U1	39	J4U1	51	J5U1	63	J6U1
4	J1V1	16	J2V1	28	J3V1	40	J4V1	52	J5V1	64	J6V1
5	J1W1	17	J2W1	29	J3W1	41	J4W1	53	J5W1	65	J6W1
6	J1G1	18	J2G1	30	J3G1	42	J4G1	54	J5G1	66	J6G1
7	RI4	19	R04	31	OV (BLOWER)	43	24E (BLOWER)	55	24VF	67	0 V
8	RI1	20	RI2	32	RI3	44	SDJ4	56	SDJ5	68	SDJ6
9	R01	21	R02	33	RO3	45	XSDJ4	57	XSDJ5	69	XSDJ6
10	5V (J1)	22	5V (J23)	34	5V (J456)	46	0 V (J1)	58	0 V (J23)	70	0V (J456)
11	PRQJ1	23	PRQJ2	35	PRQJ3	47	REQJ4	59	REQJ5	71	REQJ6
12	XPRQJ1	24	XPRQJ2	36	XPRQJ3	48	XREQJ4	60	XREQJ5	72	XREQJ6

(Pulsecoder Feedback Signal & RI/RO) (MOTOR Power & Brake)

1	BK (J1)	13	BK (J2)	25	BK (J3)	37	BK (J4)	49	BK (J5)	61	BK (J6)
2	J1U1	14	J2U1	26	J3U1	38		50		62	вкс
3	J1V1	15	J2V1	27	J3V1	39	J4U1	51	J5U1	63	J6U1
4	J1W1	16	J2W1	28	J3W1	40	J4V1	52	J5 V 1	64	J6 V 1
5	J1G1	17	J2G1	29	J3G1	41	J4W1	53	J5W1	65	J6W1
6	XROT	18	24VF	30	XHBK	42	J4G1	54	J5G1	66	J6G1
7	RI1	19	R12	31	R13	43	R14	55	R15	67	0.0
8	RO1	20	R02	32	R03	44	RO4	56	R05	68	RI6
9	RI7	21	R18	33	R07	45	RO8	57	RI9 (XPPABN)	69	R06
10	5V (J1. J2)	22	5V (J3, J4)	34	5V (J5, J6)	46	0V (J1, J2)	58	0V (J3, J4)	70	0V (J5, J6)
11	PRQJ1	23	PRQJ2	35	PRQJ3	47	PRQJ4	59	PRQJ5	71	PRQJ6
12	XPRQJ1	24	XPRQJ2	36	XPRQJ3	48	XPRQJ4	60	XPRQJ5	72	XPRQJ6


Mechanical Unit Interface Group7 M-430 | A/2P

Mechanical Unit Interface Group8 ARC Mate 100iC, M-10iA ARC Mate 120iC, M-20iA

Fig.B (ap) Mechanical Unit Interface (Group7, Group8)

---- Group 11 ----RP1 (Pulsecoder Feedback Signal & RI/RO) 22 RI4 29 RI6 RI1 RI2 15 RI3 RI5 24VF (FAN) 2 RI7 9 81S 16 RI9 23 XHBK 30 37 24VF-3 17 31 38 RO1 10 R02 RO3 RO4 R05 R06 24VF-1 24VF-2 0V-1 0V-2 R07 1.1 R08 18 25 32 S2+ 39 S2-51-1 5V-3 5٧-5 0 V - 3 0 V - 4 0V-5 0V-7 12 19 26 33 40 PRQJ1 PRQJ4 PRQJ6 PRQJ5 13 PRQJ2 20 PRQJ3 27 34 41 XPRQJ1 XPRQJ2 21 XPRQJ3 28 XPRQJ4 | 35 | XPRQJ5 | 42 | XPRQJ6 RM1 (MOTOR Power & Brake) 1 24 J1V1 J1W1 2 J1U1 35 J1G1 15 25 J1V1 J1W1 3 J1U1 J1G1 16 26 J2V1 J2W1 J2U1 J2G1 J2U1 J2G1 J2V1 J2W1 6 J3U1 39 J3G1 18 J3V1 J3W1 J3U1 40 J3G1 19 29 J3V1 J3W1 8 J4U1 41 J4G1 20 30 J4V1 J4W1 J5U1 42 J5G1 J6U1 21 J6G1 J5 V 1 J5W1 BK1_2 BK4_5_6 1.1 22 32 J6 V 1 J6W1 (J4) BK4_5_6 45 (J1, J2, J3) BKC 23 BK1_2 33 ВКЗ (J2) 46 13 (J4, J5, J6) Mechanical Unit Interface M-2iA, M-3iA

Fig.B (aq) Mechanical Unit Interface (Group11)

I/O Device in A-cabinet

Fig.B (ar) I/O device connection diagram (A-cabinet)

JD1A, B (RS-422/SLC)

1	RX	11	٥٧
2 3 4 5 6 7	XRX	12	٥٧
3	TX	13	٥٧
4	XTX	14	٥٧
5		15	٥٧
6		16	٥٧
7		17	
8		18	
9		19	
10		20	

CRMA5A (DI/DO)

			10 17 0 07		
01	XIMSTP			33	CMDENBL
02	XHOLD	19	ACK3/SNO3	34	SYSRDY
03	XSFSPD			35	PROGRUN
04	CSTOPI	20	ACK4/SNO4	36	PAUSED
05	FAULT RESET	21	ACK5/SN05	37	DOSRC1
06	START	22	ACK6/SNO6	38	HELD
07	HOME	23	DOSRC1	39	FAULT
08	ENBL	24	ACK7/SNO7	40	ATPERCH
09	RSR1/PNS1	25	ACK8/SNO8	41	TPENBL
10	RSR2/PNS2	26	SNACK	42	DOSRC1
11	RSR3/PNS3	27	RESERVED	43	BATALM
12	RSR4/PNS4	28	DOSRC1	44	BUSY
13	RSR5/PNS5	29	PNSTROBE	45	ACK1/SNO1
14	RSR6/PNS6	30	PROD START	46	ACK2/SNO2
15	RSR7/PNS7	31	DIOI	47	DOSRC1
16	RSR8/PNS8	32	D102	48	
17	DV			49	24V
18	DV	1		50	247
		J			

CRMA5B (DI/DO)

01	D103			33	DO01
02	DI04	19	D013	34	D002
03	D105			35	D003
04	D106	20	D014	36	D004
05	D107	21	D015	37	DOSRC1
06	D108	22	D016	38	D005
07	D109	23	DOSRC1	39	D006
08	DIIO	24	D017	40	D007
09	DI11	25	D018	41	D008
10	DI12	26	D019	42	DOSRC1
11	DI13	27	D020	43	D009
12	DI14	28	DOSRC1	44	DO10
13	DI15	29	DI19	45	D011
14	DI16	30	D150	46	D012
15	D117	31	DI21	47	DOSRC1
16	DI18	32	D122	48	BOOKST
17	ov	l		49	247
18	ov			50	247
. 0		ı		100	244

CRMA6A

			(00/10)		
01	D163	08	D065	14	D061
02	D164	09	D065	15	D062
03	D165	10	D066	16	D083
04	D166	10	D061	17	D064
05	D167	12	DOSRC3	18	DOSRC3
06	D168	13	DI70	19	247
07	D169	13	טזוט	20	٥٧
_		•		_	

CRMA6B (DI/D0)

			(51, 50,		
01	DI71	08	2070	14	D069
02	D172		D073	15	D070
03	D173	09	D074	16	D071
04	D174	10	D075	17	D072
05	D175	111	D076	18	DOSRC3
06	D176	12	DOSRC3	19	247
07	D177	13	D178	20	٥٧
		•			•

CRMA5C (DI/DO)

01	D153			33	D021
02	D124	19	D033	34	D022
03	D125	<u> </u>		35	D023
04	D126	20	D034	36	D024
05	D127	21	D035	37	DOSRC2
06	D128	22	D036	38	D025
07	D159	23	DOSRC2	39	D126
08	D130	24	D037	40	D027
09	D131	25	D038	41	D028
10	D132	26	D039	42	DOSRC2
11	D133	27	D040	43	D029
12	D134	28	DOSRC2	44	D030
13	D135	29	D139	45	D031
14	D136	30	D140	46	D032
15	D137	31	DI41	47	DOSRC2
16	D138	32	DI 42	48	DOUNGE
17	DISC	ł		49	247
		1			
18	OV	J		50	24V

CRMA5D

			(D I /D0)		
01	D143			33	D041
02	D144	19	D053	34	D042
03	D145	\vdash		35	D043
04	D146	20	D054	36	D044
05	D147	21	D055	37	DOSRC2
06	D148	22	D056	38	D045
07	D149	23	DOSRC2	39	D046
08	D150	24	D057	40	D007
09	D151	25	D058	41	D048
10	D152	26	D059	42	DOSRC2
11	D153	27	D060	43	D049
12	D154	28	DOSRC2	44	D050
13	D155	29	D159	45	D051
14	D156	30	D160	46	D052
15	D157	31	DI61	47	DOSRC2
16	D157	32	D162	48	DOSRCZ
		Г			0.41/
17	0.0	1		49	247
18	0 V	1		50	247

Fig.B (as) Process I/O board connector table (JA, JB)

C

SPECIFICATIONS OF PERIPHERAL DEVICE INTERFACE

C.1 SIGNAL

The following table lists the I/O signals used for the peripheral device interface in the R-30*i*B controller.

Input signals (Refer to C.3.1)

Signal	Description
*IMSTP	Instantaneous stop signal
*HOLD	Hold signal
*SFSPD	Safety speed signal
CSTOPI	Cycle stop signal
FAULT_RESET	Alarm release signal
START	Cycle start signal
HOME	Robot service request/program number select signal (*1)
ENBL	Enabling signal
RSR1/PNS1	Robot service request/program number select signal (*1)
RSR2/PNS2	Robot service request/program number select signal (*1)
RSR3/PNS3	Robot service request/program number select signal (*1)
RSR4/PNS4	Robot service request/program number select signal (*1)
RSR5/PNS5	Robot service request/program number select signal (*1)
RSR6/PNS6	Robot service request/program number select signal (*1)
RSR7/PNS7	Robot service request/program number select signal (*1)
RSR8/PNS8	Robot service request/program number select signal (*1)
PNSTROBE	PNS strobe signal
PROD_START	Automatic operation start signal
DI01	General-purpose input signal
DI02	General-purpose input signal
DI03	General-purpose input signal
DI04	General-purpose input signal
DI05	General-purpose input signal
DI06	General-purpose input signal
DI07	General-purpose input signal
DI08	General-purpose input signal
DI09	General-purpose input signal
DI10	General-purpose input signal
DI11	General-purpose input signal
DI12	General-purpose input signal
DI13	General-purpose input signal
DI14	General-purpose input signal
DI15	General-purpose input signal
DI16	General-purpose input signal
DI17	General-purpose input signal
DI18	General-purpose input signal
DI19	General-purpose input signal
DI20	General-purpose input signal
DI21	General-purpose input signal
DI22	General-purpose input signal

NOTE

*1: RSR: Robot Service Request (RSR5 to RSR8 are optional)

PNS: Program Number Select Input (optional)

Whether RSR is used or PNS is used can be preset.

Output signals (Refer to C.3.2)

Output signals (Refer to C.3.2)					
Signal	Description				
CMDENBL	Command acceptance enabled signal				
SYSRDY	System ready signal				
PROGRUN	Program run signal				
PAUSED	Program paused signal				
HELD	Held signal				
FAULT	Alarm signal				
ATPERCH	Reference point signal				
TPENBL	Teach pendant enabled signal				
BATALM	Battery alarm signal				
BUSY	Operating signal				
ACK1/SNO1	RSR acknowledge/Selected program number signal				
ACK2/SNO2	RSR acknowledge/Selected program number signal				
ACK3/SNO3	RSR acknowledge/Selected program number signal				
ACK4/SNO4	RSR acknowledge/Selected program number signal				
ACK5/SNO5	RSR acknowledge/Selected program number signal				
ACK6/SNO6	RSR acknowledge/Selected program number signal				
ACK7/SNO7	RSR acknowledge/Selected program number signal				
ACK8/SNO8	RSR acknowledge/Selected program number signal				
SNACK	PNS acknowledge signal				
	Not used (for future expansion)				
DO01	General-purpose output signal				
DO02	General-purpose output signal				
DO03	General-purpose output signal				
DO04	General-purpose output signal				
DO05	General-purpose output signal				
DO06	General-purpose output signal				
DO07	General-purpose output signal				
DO08	General-purpose output signal				
DO09	General-purpose output signal				
DO10	General-purpose output signal				
DO11	General-purpose output signal				
DO12	General-purpose output signal				
DO13	General-purpose output signal				
DO14	General-purpose output signal				
DO15	General-purpose output signal				
DO16	General-purpose output signal				
DO17	General-purpose output signal				
DO18	General-purpose output signal				
DO19	General-purpose output signal				
DO20	General-purpose output signal				

C.2 SETTING COMMON VOLTAGE

All process I/O boards have a jumper to set the common voltage of input signals to 0 V or 24 V. The system automatically adjusts the polarity by software according to the status of this pin. Therefore, you can operate the system without being concerned about the setting of the common voltage.

To ensure safety, the common reference voltage of the following four signals, is remains at +24V.

*IMSTP

*HOLD

*SFSPD

CSTOPI

I/O SIGNALS

Input Signals

This section describes the specifications of each input signal.

(1) Instantaneous stop signal (input) *IMSTP

Effective: At any time

Use the normally closed switch because it is a reverse signal. The system turns off Function:

power to the servo unit when the *IMSTP is open (turned off). Do not use *IMSTP as safety relevant signal. For safety purpose, use the external emergency stop signal.

(2) Alarm release signal (input) FAULT RESET

Effective: In the alarm status

Function: The FAULT RESET signal releases the alarm status. If the servo unit has been

turned off, it also turns on the unit. At the same time, the alarm display on the teach

pendant (the top line) is cleared.

This signal releases only the alarm status. It does not re-start execution of the Description:

program. The robot will keep running if the signal is triggered "ON" during

operation.

(3) Hold signal (input) *HOLD

Effective: At any time

Use the normally-closed switch because it is a reverse signal. The *HOLD signal has Function:

the same function as the hold button on the teach pendant. It halts the current program and stops the operation of the robot. While this signal is being input, the

held signal (output) HELD is turned on and the robot cannot be operated.

(4) Start signal (input) START

Effective: When the command acceptance enabled signal (output) CMDENBL is turned on. See

the description of CMDENBL in Section C.3.2 (1) for details.

This input signal starts the selected program at the falling edge when the signal is Function:

turned off after being turned on. Its function differs according to the setting of

parameter \$SHELL_CFG. \$CONT_ONLY.

If parameter \$SHELL_CFG.\$CONT_ONLY is set to DISABLED, the START signal starts the program which has been selected from the teach pendant. By default, the

program starts from the current cursor position.

If parameter \$SHELL_CFG.\$CONT_ONLY is set to ENABLED, the START signal only resumes the execution of the temporarily held program. To execute an

inactivated program from the start, input the PROD_START signal.

(5) Cycle stop signal (input) CSTOPI

At any time Effective:

Function:

If parameter \$SHELL_CFG.\$USE_ABORT is set to DISABLED, the CSTOPI signal releases the program from the wait status caused by an RSR. It does not stop the execution of the current program and allows it to continue processing (by default).

- If parameter \$SHELL_CFG.\$USE_ABORT is set to ENABLED, the CSTOPI signal immediately cancels the execution of the current program. The program returns to the status in which it was before execution, and the information for the subprogram to return to the main program is lost. At the same time, this signal also releases the program from the wait status caused by RSR.

(6) Enabling signal (input) ENBL

Effective: At any time

Function: If the ENBL signal is turned off, the operation of the robot or the activation of a

program is inhibited, and the execution of the current program is suspended.

(7) Safety speed signal (input) *SFSPD

Effective: At any time

Function:

- Use the normally-closed switch because it is a reverse signal. Usually this switch should be connected to safety fence. It must be set normally on.
- Since the *SFSPD signal is counted as a remote condition, such input signals as RSR and START to the peripheral device interface cannot take effect unless this signal is turned on.
- If this signal is turned from on to off during robot operation, the execution of the current program is suspended. At the same time, the overriding value is switched to a preset value (parameter \$SCR. \$FENCEOVER.)
- As long as this signal is off, the overriding value cannot be increased beyond the preset value (\$SCR.\$SFJOGOVLIM: For jog, \$SCR. \$SFRUNOVLIM: For test execution.)

(8) Robot service request signal (input) RSR1/RSR2/RSR3/RSR4

Effective: When the command acceptance enabled signal (output) CMDENBL is turned on. See the description of CMDENBL in Section C.3.2 (1) for details.

Function:

- The user can choose between RSR and PNS (optional), although they cannot be used simultaneously.
- Four input signals, RSR1 to RSR4, are used.
- If a signal is input to an RSR input, a specified program is started. The program number can be set by a menu.
- If another program has already started processing, the newly activated program enters the wait status. As soon as the current program terminates, the waiting program starts processing.
- By using an RSR instruction, each RSR in a program can be enabled or disabled.
- A menu is provided to register the program number of a specified program when each RSR is input. (Refer to the application manual for details of the menu).

(//////////////////////////////////////			
	1/8		
1 Job selection:	RSR	RSR or PNS	
2 RSR1 program number:	12	09999	
3 RSR2 program number:	23	09999	
4 RSR3 program number:	5	09999	
5 RSR4 program number:	64	09999	
6 Base number:	100	09999	
7 Acknowledge:	Enabled	Enabled or disabled	
8 Acknowledge pulse width:	250 msec	09999msec	
= ·	=	=	

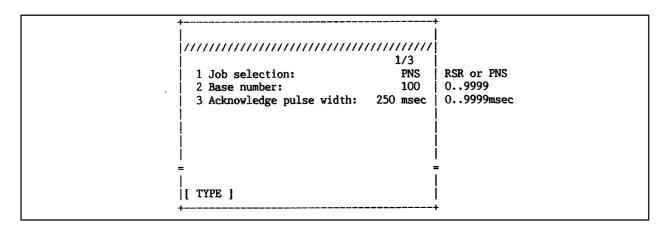
- When an RSR is input, the program whose program name consists of the specified program number plus a base value is started. For example, if a signal is input to RSR2 when program number 23 is registered in RSR2, the program to be started is the one with the program name calculated from the expression RSR + (RSR2 program number + base number), i.e., RSR0123.

The base number is stored in parameter \$SHELL_CFG.\$JOB_BASE, and can be changed in a program with a parameter instruction. (For example, \$SHELL_CFG. \$JOB_BASE =100). In this way, the combination of programs which can be started by RSRs can be changed.

- Whether the system should output an acknowledge signal to an RSR can be selected from the menu. If so specified, a pulse is output from the signal corresponding to the RSR, one of signals ACK1 to ACK4, when the input of the RSR is accepted. From the same menu, the width of the pulse can also be specified.
 - It is possible to accept other RSRs while outputting an acknowledge signal.
- Input of a CSTOPIT signal can clear the program queue waiting for execution after acceptance of RSRs.

(9) PNS/PNSTROBE (input)

Signal name: PNS: Program number select


PNSTROBE: Strobe input for PNS

Effective: When the command acceptance enabled signal (output) CMDENBL is turned on. See

the description of CMDENBL in Section C.3.2 (1) for details.

Function:

- The PNS/PNSTROBE signal selects whether the RSR function is used or the PNS function (optional) is used. If the PNS function is enabled, the RSR function cannot be used.
- The eight signals PNS1 to PNS8 are used to specify a program at the instant the strobe signal PNSTROBE rises.
- A menu is provided to specify the information about PNS.

If a number other than zero is entered to PNS input, a program is selected whose program number is the entered value plus the base number. For example, if the PNS value is 23, the program to be started has the program name calculated from the expression

PNS + (entered PNS value + base number), i.e., PNS0123.

If zero is entered to PNS input, it is cleared as if no selection has been made.

- A PNS signal, which can only select a program, cannot execute the selected program. The execution of the selected program can only be started after input of automatic operation start signal PROD_START.
- For safety, the selected program cannot be changed from the teach pendant unless PNSTROBE is turned off.
- If a program is selected by PNS, the program number is output to selected program number signal (output) SNO, and a pulse is output to program selection acknowledge signal SNACK. Using these signals, peripheral devices can confirm the correct program has been selected. For the timing of these signals, see the sections describing SNO and SNACK.
- The following operations are effective for the program selected by PNS. You can:
- Start up a program by input of automatic operation start signal PROD_START
- Restart the program that has been suspended.
 Inputting the START signal restarts the program selected by PNS when \$SHELL_CFG.\$CONT_ ONLY is set to ENABLED.
- Input of CSTOPI cancels execution of the pro-grams selected by PNS when \$SHELL_CFG.\$USE_ABORT is set to ENABLED.

(10) Automatic operation start signal (input) PROD_START

Effective: When the command acceptance enabled signal (output) CMDENBL is turned on. See

the description of CMDENBL in Section C.3.2 (1) for details.

Function: This input signal executes the selected program at the falling edge when the signal is

turned off after being turned on.

C.3.2 Output Signals

This section describes the specifications of output signals for the peripheral device interface.

(1) Command acceptance enabled signal (output) CMDENBL

Turned on: When the remote conditions are satisfied and the system is not in the alarm status.

Turned off: When the remote conditions are not satisfied or the system is in the alarm status. The remote conditions are satisfied when all of the following are satisfied.

- The teach pendant is in the DISABLED status.
- The remote/local setting is set to REMOTE.
- Parameter \$RMT_MASTER is set to 0 (external interface).

- Signal *SFSPD is set to on, or in the normal status.

(2) System ready signal (output) SYSRDY

Turned on: When power is applied to the motor of the robot.

Turned off: When power is not applied to the motor of the robot.

(3) Program run signal (output) PROGRUN

Turned on: When the program is being executed.

Turned off: When the program is not being executed.

(4) Held signal (output) HELD

This signal is used to check the status of the hold input.

Turned on: When the hold button on the teach pendant (or input) is being pressed down (or

turned on).

Turned off: When the hold button on the teach pendant (or input) is not being pressed down (or is

turned off).

(5) Program paused signal (output) PAUSED

This signal is used together with output signal PROGRUN to determine whether a program can be restarted while it is being held.

Turned on: When a program is held and has not been restarted yet. While this signal is on, the

program can be restarted and retains information such as that to return from a

subprogram to the main program.

Turned off: When a program is being executed or is ready to start. If signal PROGRUN is on,

the program is being executed. If signal PROGRUN is off, the program has not

been executed and can be started from this status.

(6) Alarm status signal (output) FAULT

Turned on: When the system is in the alarm status (or an alarm which can stop a program

execution is detected.) The indicator lamp does not go on in warning.

Turned off: When the alarm status is released by an alarm release operation.

(7) Reference point signal (output) ATPERCH

Turned on: When the robot is in the reference position specified in the parameter. (The reference

point No.1 in reference point setup screen.)

Turned off: When the robot is not in the reference position specified in the parameter. (The

reference point No.1 in reference point setup screen.) Up to three reference positions can be specified, but this signal is output when the robot is in the first reference position. For the other two reference positions, general-purpose signals can be

assigned to output as such. (They can be set from the setup screen.)

(8) Teach pendant enabled signal (output) TPENBL

Turned on: When the teach pendant is enabled.

Turned off: When the teach pendant is disabled.

(9) Battery alarm signal (output) BATALM

Turned on: When the voltage of the battery for the CMOS memory backup drops below the

reference.

Turned off: When the voltage of the battery for the CMOS memory backup is at the normal level.

(10) Operating signal (output) BUSY

Turned on: When a program is being executed or is being processed from operation panels such

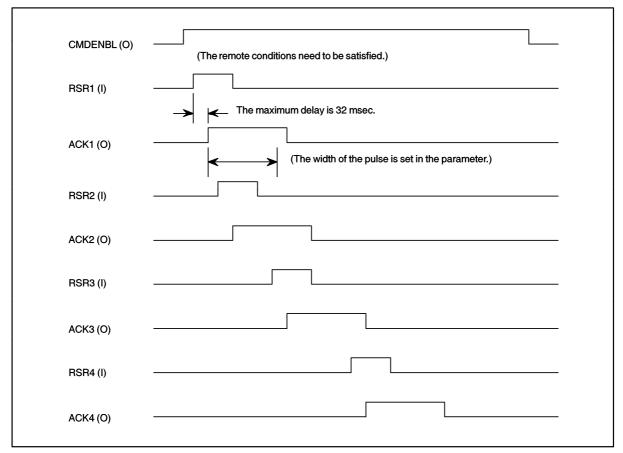
as the teach pendant. (This has the same function as that of the BUSY lamp on the

teach pendant.)

Turned off: When a program is not being executed nor is being processed from operation panels such as the teach pendant.

(11) RSR acknowledge signals (output) ACK1/ACK2/ACK3/ACK4

These signals are used together with the RSR function. They can be specified to be enabled or disabled from the RSR setup menu.

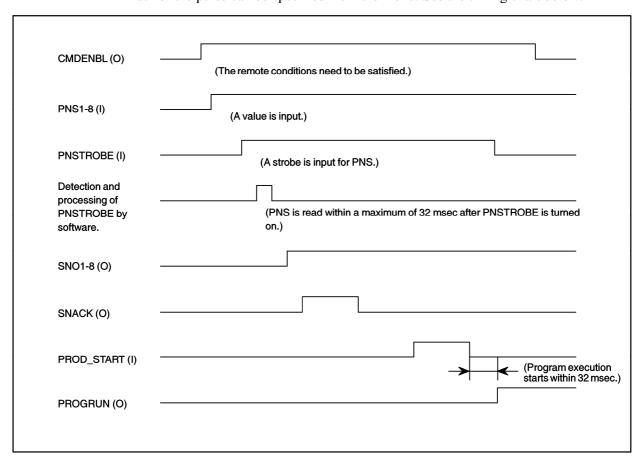

Turned on: When one of the signals from RSR1 to RSR4 is input and accepted. A pulse whose

width is specified from the menu is output to acknowledge the signal.

Turned off: Normally. Since these signals are always output as pulses, they are normally in the

off status.

The following chart shows the timing of the RSR input and ACK output.


^{*} Other RSR signals can be accepted even when the ACK signal is being output.

(12) PNS acknowledge signal (output) SNO/SNACK

These signals are used together with the PNS function.

Turned on:

Whenever the PNS function is enabled. The selected program number is displayed in binary code (SN01 to SN08) on the teach pendant. If the number cannot be represented as an eight-bit number, it becomes zero. After selecting a program by PNS, a pulse is output from signal SNACK as a part of the PNS operation. The width of the pulse can be specified from the menu. See the timing chart below.

C.4 SPECIFICATIONS OF DIGITAL INPUT/OUTPUT

C.4.1 Overview

This section describes the external specifications of digital and analog input/output in the R-30*i*B controller.

C.4.2 Input/Output Hardware Usable in the R-30iB Controller

The R-30*i*B controller can use up to 512 digital input and output points or an equivalent number of analog input and output points. One analog input/output point uses the resources equivalent to those used by 16 digital I/O points.

The R-30iB can use a total of up to 512 I/O points.

The R-30*i*B controller can use the following I/O hardware.

- Process I/O printed board
- I/O unit model A

The process I/O board and the I/O unit model A can be used together.

C.4.3 Software Specifications

(1) RI/RO

These are signals sent to the connector at the wrist of the robot.

They cannot be assigned (redefined) and are fixed.

The standard format is eight inputs and eight outputs. The number of points that can be used for the connector at the wrist depends on the individual robot.

(2) DI/DO

The signal No. that is determined at hardware can be changed by software operation.

(3) Analog I/O

An analog I/O signal can access the analog I/O port (optional) on the process I/O board or the I/O port on the analog I/O module (used together with the I/O unit model A).

It reads and writes the digital value converted from the analog value of the I/O voltage. It means that the value does not always represent the real I/O voltage.

(4) Group I/O

Group I/O is a function, which can input or output multiple DI/DO signals as binary codes. Any number of continuous signals of up to 16 bits can be set for its use. It can be set in the menu DETAILS on the group I/O screen.

OPTICAL FIBER CABLE

The R-30*i*B uses fiber optic cables for communication between the main board and servo amplifiers. Observe the following cautions when handling these fiber optic cables. Handle fiber optic cables with utmost care, especially when installing the unit.

(1) Protection during storage

When the electrical/optical conversion module (mounted on the printed) circuit board and the fiber optic cable are not in use, their mating surfaces must be protected with the lid and caps with which they are supplied. If left uncovered, the mating surfaces are likely to become dirty, possibly resulting in a poor cable connection.

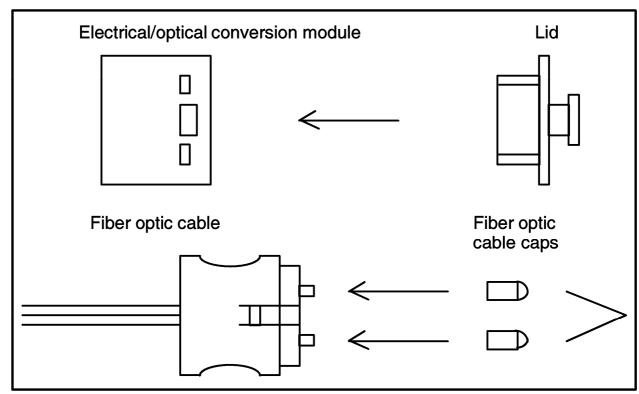


Fig.D (a) Protection of electrical/optical conversion module and fiber optic cable (when not in use)

(2) Fiber optic cable

External type

Fiber optic cord diameter: ϕ 2.2 mm x2 cords

Diameter of cable with reinforced cover: ϕ 7.6 mm

Tensile strength:

Cable with reinforced cover: 75 kg

Fiber optic cord: 7 kg per cord

Between fiber optic cord and connector: 2 kg
Minimum bending radius of fiber optic cord: 25 mm
Minimum bending radius of cable with reinforced cover: 50 mm

Bending resistance (cable with reinforced cover): 10 million bending cycles at room

temperature (when the bending radius

is 100 mm)

Flame resistance: Equivalent to UL VW-1

Operating temperature: -20 to 70°C

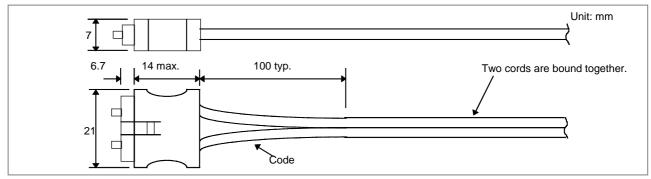


Fig.D (b) External dimensions of external optical cable Unit: mm

Internal type

Fiber optic cord diameter: ϕ 2.2 mm×2 cords

Tensile strength:

Fiber optic cord: 7 kg per cord

Between fiber optic cord and connector: 2 kg Minimum bending radius of fiber optic cord: 25 mm

Flame resistance: Equivalent to UL VW-1

Operating temperature: -20 to 70°C

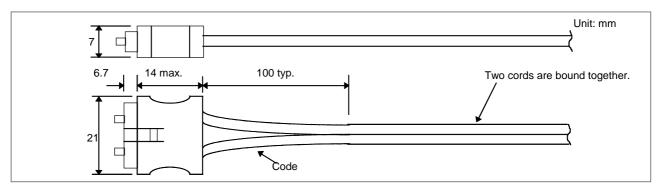


Fig.D (c) External dimensions of internal optical cable Unit: mm

- After it is connected, the optical connector is automatically locked by the lock levers on its top. To remove the connector, release the lock levers and pull the connector. (Do not pull on the fiber optic cord itself.)
- Although optical connectors cannot be connected in other than the correct orientation, always take note of the connector's orientation before making the connection.
- Take care to keep both parts of the optical connector (cable side and PCB side) clean. If they become dirty, wipe them with tissue paper or absorbent cotton to remove dirt. The tissue paper or absorbent cotton may be moistened with ethyl alcohol. Do not use any organic solvent other than ethyl alcohol.
- Fix the reinforcing cover by using a cable clamp, as shown in Fig.D(d), to prevent the weight of the fiber optic cable from being applied directly to the connecting part of the optical connector.
- Although the reinforcing cover of the external optical cable has sufficient mechanical strength, be careful not to drop heavy objects on the cable.

Fig.D (d) Fixing the cable with a clamp

- Any superfluous portion of the cable might be wound into loops. Should this prove necessary, make sure the diameter of each loop is at least 150 mm (for an external cable). Winding the cable into smaller loops can produce sharp curves that exceed the specified bend radius limit. Such bending can result in transmission loss, ultimately leading to a communication failure.
- When using a (cable tie) as a cable clamp, follow the instructions given below. Also, take care not to apply a bending force to one particular part of the cable when fixing it with a clamp. Failing to clamp the cable correctly might cut or damage it.

External cable:

Do not clamp the uncovered portion of the cable with a cable tie. When clamping the cable by the reinforcing cover, the clamping force is not an important factor to consider. However, ensure that the clamping force is as small as possible to ensure that the reinforcing cover is not deformed by the clamping.

If possible, the clamping force should be 5kg (111bs) or less.

Internal cable:

Lightly clamp the optical cable with a cable tie so that the cable shield is not deformed. Desirable clamping force is 1 to 2 kg (make sure that no force is applied to the cable).

Optical fiber cable for FSSB

Туре	Specification	Max. length
Outside of cabinet	A66L-6001-0026#L~	50m (Slave to Slave:40m)
Inside of cabinet	A66L-6001-0023#L~	10m

E BRAKE RELEASE UNIT

E.1 SAFETY PRECAUTIONS

⚠ WARNING

- Support the robot arm by mechanical means to prevent it from falling down or rising up when brake is released. Before using the brake release unit, read the Operator's manual of the robot that tries to release the brake.
- Confirm that the robot is fixed tightly to the floor to prevent the falling down and unexpected movement of robot.
- Confirm that the outlet with earth is used for the power supply of brake release
 unit and earth of brake release unit is surely connected to earth of power supply.
 There is danger of getting an electric shock if earth is not connected.

E.2 CONFIRMATIONS BEFORE OPERATION

Confirm the followings before operation.

- (1) Confirm the exterior of the brake release unit and the power cable. Do not use it when there are damages in the unit and the cable.
- (2) Confirm that the power supply of the robot controller is disconnected.
- (3) There are Two types of brake release units according to the input voltage as shown in Table E.2 (a). Confirm the input voltage of the unit to refer to the input voltage label put to the unit (Fig.E.4).
- (4) Confirm that the voltage of power supply before connecting the power supply to the brake release unit. There is possibility to give the damaging to the brake or the brake release unit when the incorrect power supply is connected to the unit.

Table E.2 (a) Specification of Brake release unit

Brake release unit	Remarks
Brake release unit (AC 100V)	Input voltage AC100-115V, single phase
Brake release unit (AC 200V)	Input voltage AC200-240V, single phase

(5) The brake release unit connection cable is different in each robot. Confirm the cable specification corresponding to the robot referring to Table E.2 (b).

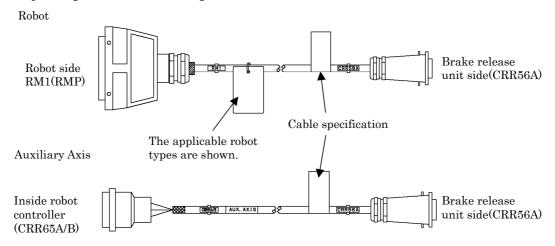


Fig.E.2 Brake release unit connection cable

Controller	Applicable robot types	Specification of cable
	R-2000 <i>i</i> B, R-2000 <i>i</i> C, R-1000 <i>i</i> A,M-2 <i>i</i> A,M-3 <i>i</i> A	
	M-710 <i>i</i> C,M-410 <i>i</i> B,M-420 <i>i</i> A,M-421 <i>i</i> A,M-410 <i>i</i> C, M-900 <i>i</i> A, M-900 <i>i</i> B,M-2000 <i>i</i> A	A660-2005-T559
R-30 <i>i</i> B	F-200 <i>i</i> B	A660-2005-T871
Stand alone type	M-10 <i>i</i> A,M-20 <i>i</i> A,CR35 <i>i</i> A,	A660-2006-T881
Starid alone type	ARC Mate 100iC,ARC Mate 120iC	A000-2000-1881
	M-430 <i>i</i> A/2PH,4FH	A660-2006-T888
	M-430 <i>i</i> A/2P	A660-2006-T887
	Aux. Axis	A660-2005-T711
R-30 <i>i</i> B	M-410 <i>i</i> B,M-410 <i>i</i> C	A660-2006-T803
Integrated type	IVI-410/D,IVI-410/C	A000-2000-1803

Table E.2 (b) Specification of brake release unit connection cable

E.3 OPERATION

E.3.1 In Case of Operating to the Robot

Operate the brake release unit according to the following procedures.

- (1) Support the robot arm by mechanical means to prevent it from falling down or rising up when brake is released. Refer to the Operator's manual for each robot.
- (2) Connect the Brake Release Unit connection cable to Brake Release Unit.
- (3) Disconnect the RM1 connector from Robot, and connect the Brake Release Unit connection cable to the Robot. Keep the connection of Robot connection cable except RM1 cable.
- (4) Connect the power cable of Brake release unit to power supply.
- (5) Press and hold the deadman switch in the middle position.
- (6) Press the brake switch '1'..'6' according to the axis that tries to release the brake, then brake will be released. (Refer to Table E.3.1) Two axes or more cannot be operated at the same time.

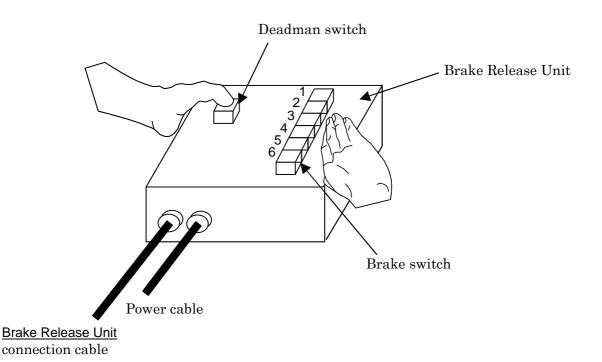


Fig.E.3.1 (a) Brake release unit

Table E.3.1 The relation between brake s	witch and robot axis
--	----------------------

Robot Type	Brake Unit Button						
	1	2	3	4	5	6	
Robot with R-30iB	J1	J2	J3	J4	J5	J6	
M-410 <i>i</i> B (Integrated robot)	J1 to J4	-	-	-	-	-	
In case of the auxiliary Axis	J1	-	-	-	-	-	

- Refer to the manual in the mechanism excluding robot for 6 axis brake.
- Refer to Fig.E.3.1 (c) for M-410*i*B (Integrated robot).
- Refer to Fig.E.3.2 for the auxiliary axis.

Except M-410iB (Integrated robot)

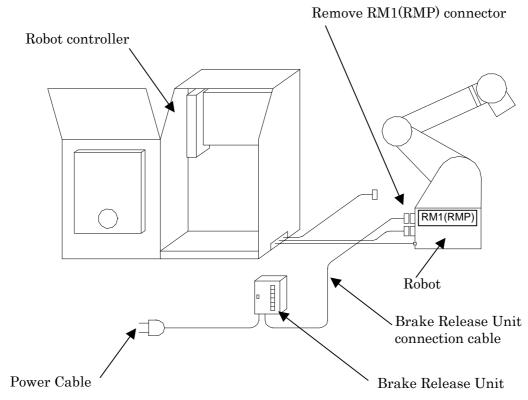


Fig.E.3.1 (b) How to connect brake release unit (In case of except M-410iB)

In case of M-410*i*B (Integrated robot)

Connect Brake release unit cable to servo motor brake connector. Only J1 switch is available.

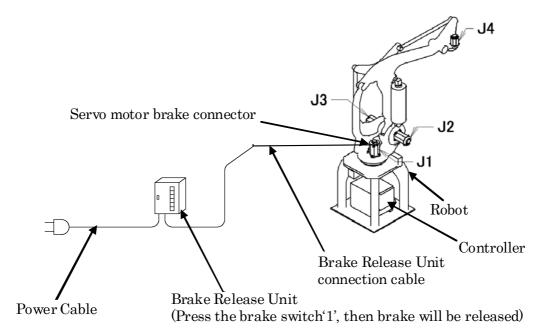


Fig.E.3.1 (c) How to connect brake release unit (In case of M-410iB)

E.3.2 In Case of Operating to the Auxiliary Axis

Operate the brake release unit according to the following procedures.

- (1) Support the auxiliary Axis by mechanical means to prevent it from falling down or rising up when the brake is released.
- (2) Connect the Brake Release Unit connection cable to Brake Release Unit.
- (3) Disconnect the aux. axis brake connector (CRR65A/B), and connect the CRR65A/B connector to the Brake Release Unit connection cable. Keep the connection of all cables of aux. axis motor (power, Pulsecoder, brake).
- (4) Connect the power cable of Brake release unit to power supply.
- (5) Press and hold the deadman switch in the middle position.
- (6) Press the brake switch '1', then brake will be released.

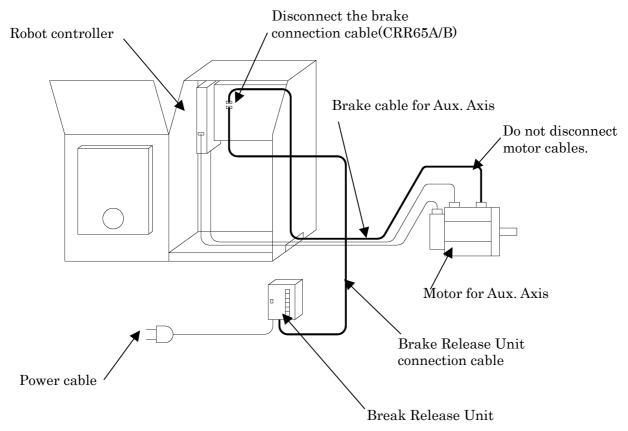
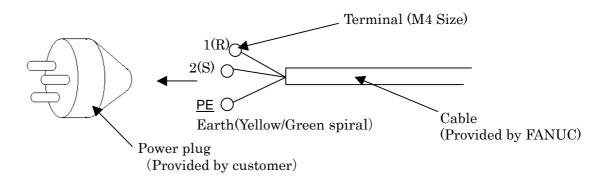



Fig.E.3.2 How to connect brake release unit (In case of operating to the Aux. Axis)

E.4 HOW TO CONNECT THE PLUG TO THE POWER CABLE (IN CASE OF NO POWER PLUG)

Connect the plug to the power cable as follows. This plug is provided by customer.

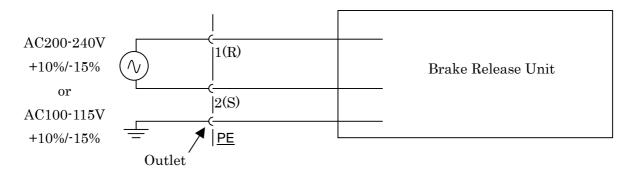
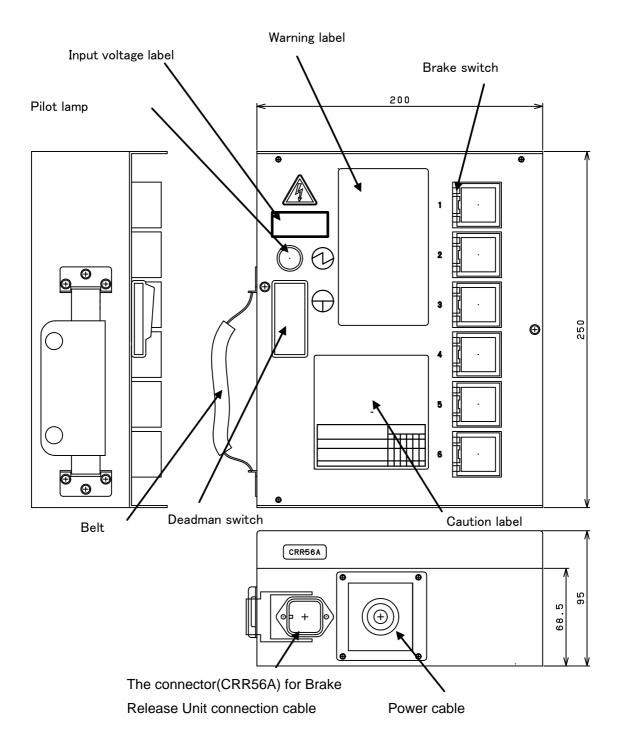



Fig.E.4 How to connect the plug to the power cable

↑ WARNING

- Only a specialist having the relevant expertise knowledge is permitted to connect the plug to the power cable.
- In the EU area, only plug complying with the relevant European product standard can be used.
- Do not install the plugs without protective earth pin.

E.5 DIMENSION

APPENDIX

Fig.E.5 (a) Dimension of brake release unit (Front view)

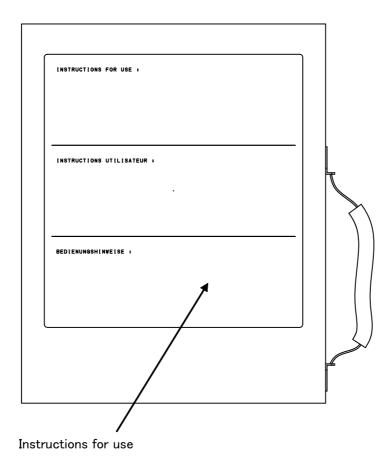


Fig.E.5 (b) Dimension of brake release unit (Rear view)

E.6 FUSE

The fuses are mounted inside this unit. Please check the fuse when the pilot lamp doesn't light even if deadman switch is pressed. When the fuse is blown, exchange the fuse after finding the root cause of failure, and taking the appropriate countermeasures.

Manufacturer: Daito Communication Co.

Specification: P420H Rating: 2A

⚠ WARNING

When the fuse is replaced, the power cable of brake release unit must be disconnected.

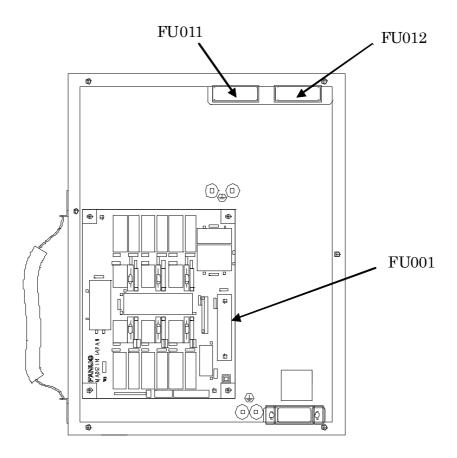


Fig.E.6 The location of fuses

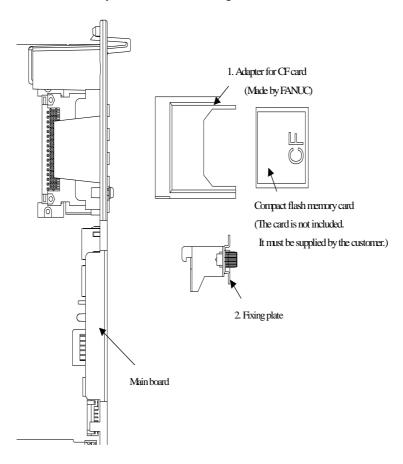
E.7 SPECIFICATIONS

Input power supply

AC100-115V, 50/60Hz \pm 1Hz, single phase, +10%/-15%, 1A AC200-240V, $50/60Hz\pm 1Hz$, single phase, +10%/-15%, 1A

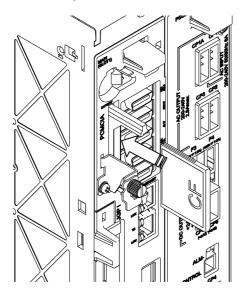
Weight

Brake Release Unit (AC 100V): 2.3 kgBrake Release Unit (AC 200V): 3.5 kg

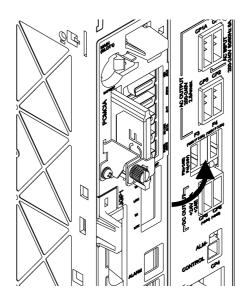

F

HOW TO USE THE PLATE TO FIX THE COMPACT FLASH MEMORY CARD

Optional plate to fix the compact flash memory card (CF card) can make it possible to perform a back-up on fixing the CF card on the main board.

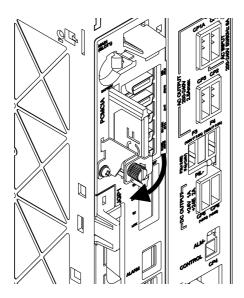

Parts

- Fixing plate (Ordering number A05B-2500-J300)
- Adapter for CF card (made by FANUC) (Ordering number A02B-0303-K150)

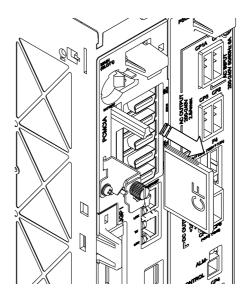


- Installation of the CF card

 Insert the CF card into the Adapter.

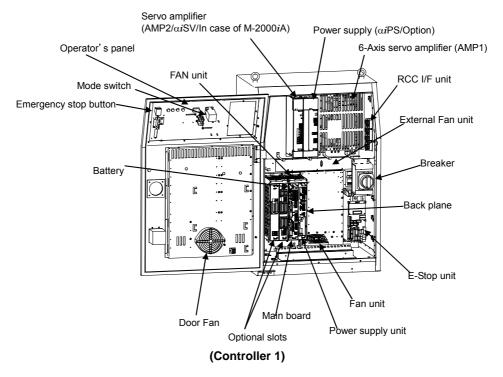


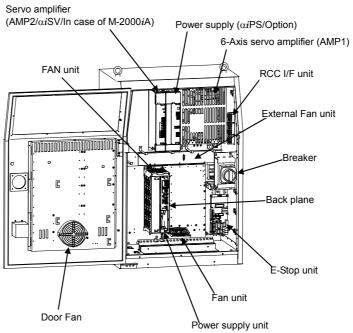
2. Lock the latch, and drive the screw.



- Removal of the CF card

 Loosen the screw, and unlock the latch.


Pull the CF card out of the Adapter.



G THE CONTROLLER FOR M-900*i*A/200P, M-2000*i*A

Additional document of the controller for M-900iA/200P, M-2000iA.

G.1 CONFIGURATION

(Controller 2)
Fig.G.1(a) M-900*i*A/200P, M-2000*i*A CONTROLLER (B-cabinet)

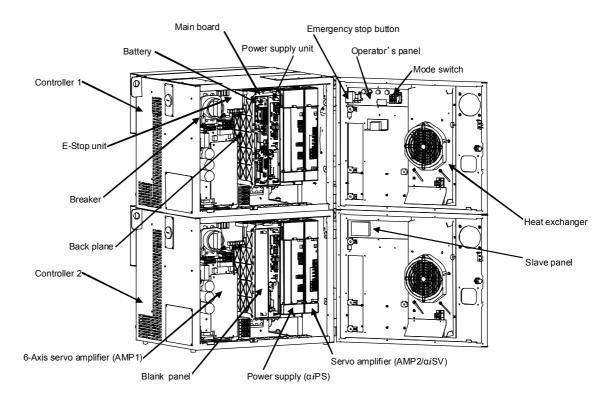


Fig.G.1(b) M-2000iA, CONTROLLER (A-cabinet)

G.2 TROUBLESHOOTING USING THE ALARM CODE

G.2.1 Troubleshooting Using the Alarm Code

SRVO-101 Robot overtravel

(Explanation) The robot has moved beyond a hardware limit switch on the axes.

(Action) Take the same actions as SRVO-005.

NOTE

It is factory-placed in the overtravel state for packing purposes.

If the Overtravel signal is not in use, it may have been disabled by

short-circuiting in the mechanical unit.

SRVO-102 Hand broken

(Explanation) The safety joint (if in use) might have been broken. Alternatively, the HBK signal on

the robot connection cable might be a ground fault or a cable disconnection.

(Action) Take the same actions as SRVO-006.

NOTE

If the Hand broken signal is not in use, it can be disabled by software setting.

Refer to Subsection 5.5.3 How to Disable/Enable HBK in Part III,

"CONNECTIONS" of "Maintenance Manual" to disable the Hand broken signal.

SRVO-103 Pneumatic pressure abnormal

(Explanation) An abnormal air pressure was detected. The input signal is located on the EE

interface of the robot. Refer to the manual of your robot.

(Action) Take the same actions as SRVO-009.

SRVO-106 Door open or E-stop

(Explanation) The cabinet door is open.

- When the door switch is mounted.

(Action) Take the same actions as SRVO-105

SRVO-244 Chain 1 (+24V) abnormal SRVO-245 Chain 2 (0V) abnormal

(Explanation) A mismatch occurred between duplicate safety signals.

SRVO-244 is issued if such a mismatch that a contact connected on the chain 1 side (between EES1 and EES11, between EAS1 and EAS11, between EGS1 and EGS11, between SD4 and SD41, and so forth) is closed, and a contact on the chain 2 side (between EES2 and EES21, between EAS2 and EAS21, 7between EGS2 and EGS21, between SD5 and SD51, and so forth) is open occurs. SRVO-245 is issued if such a mismatch that a contact on the chain 1 side is open, and a contact on the chain 2 sides is closed occurs.

If a chain error is detected, correct the cause of the alarm then reset the alarm according to the method described later.

(Action) Take the same actions as SRVO-230, 231.

⚠ WARNING

If this alarm is issued, do not reset the chain error alarm until the failure is identified and repaired. If robot use is continued with one of the duplicate circuits being faulty, safety may not be guaranteed when the other circuit fails.

⚠ CAUTION

- 1 The state of this alarm is preserved by software. After correcting the cause of the alarm, reset the chain error alarm according to the chain error reset procedure described later.
- 2 Until a chain error is reset, no ordinary reset operation must be performed. If an ordinary reset operation is performed before chain error resetting, the message "SRVO-237 Chain error cannot be reset" is displayed on the teach pendant.

SRVO-301 Hand broken/HBK disabled SRVO-303 Set Hand broken to ENABLE

(Explanation) Although HBK was disabled, the HBK signal was input.

(Action) Take the same actions as SRVO-300, 302.

G.2.2 Alarms Detected by Servo Amplifier

The following alarms are detected by servo amplifier.

If the alarms in the following table are caused, find the controller, which the alarm is caused according to the table of relationship of axis. (F2.3)

And find the cause and take an appropriate measure according to the troubleshooting in MAINTENANCE PART Chapter 3.

Table G.2.2 Alarms detected by servo amplifier

Alarm					
SRVO - 018 Brake abnormal (Group:i Axis:j)					
SRVO - 043 DCAL alarm (Group:i Axis:j)					
SRVO - 044 HVAL alarm (Group:i Axis:j)					
SRVO - 047 LVAL alarm (Group:i Axis:j)					
SRVO - 049 OHAL1 alarm (Group:i Axis:j)					
SRVO - 136 DCLVAL alarm (Group:i Axis:j)					

G.2.3 Relationship of Axis

The following table is shown the relation ship of each axes (Axis (j) displayed in the teach pendant, motor number, Controller, Connector of Amplifier) for M-900*i*A/200P, M-2000*i*A

If the alarm is occurred, find the motor number, the connector of Amplifier and the controller (which the alarm is caused) according to the relationship of the axis and the alarm displayed in the teach pendant (Axis (j)), and find the cause of alarm according to the trouble shooing.

ALARM displayed in the teach pendant.

SRVO - *** ALARM (Group:i Axis:j)

Table G.2.3 (a) Relation of axis (In case of M-900iA/200P)

Table G.2.3 (a) Relation of axis (in case of M-9007A/200F)							
	Axis (j)	Motor number	Controller	Connector of AMP			
M-900 <i>i</i> A/200P	1	J1A	CONTROLLER 2	6 axis amplifier (AMP1): CNJ1			
Without Aux. Axis AMP	2	J2	CONTROLLER 2	6 axis amplifier (AMP1): CNJ2			
	3	J3	CONTROLLER 1	6 axis amplifier (AMP1): CNJ2			
	4	J4	CONTROLLER 2	6 axis amplifier (AMP1): CNJ4			
	5	J5	CONTROLLER 2	6 axis amplifier (AMP1): CNJ5			
	6	J6	CONTROLLER 1	6 axis amplifier (AMP1): CNJ3			
	7	J1B	CONTROLLER 1	6 axis amplifier (AMP1): CNJ1			
M-900 <i>i</i> A/200P	1	J1A	CONTROLLER 2	6 axis amplifier (AMP1): CNJ1			
In case of	2	J2	CONTROLLER 2	6 axis amplifier (AMP1): CNJ2			
1 Aux. Axis amplifier	3	J3	CONTROLLER 1	6 axis amplifier (AMP1): CNJ2			
	4	J4	CONTROLLER 2	6 axis amplifier (AMP1): CNJ4			
	5	J5	CONTROLLER 2	6 axis amplifier (AMP1): CNJ5			
	6	J6	CONTROLLER 1	6 axis amplifier (AMP1): CNJ3			
	7	J7 (Aux. axis)	CONTROLLER 1	6 axis amplifier (AMP1): CNJ4			
	8	J1B	CONTROLLER 1	6 axis amplifier (AMP1): CNJ1			

Table G.2.3 (b) Relation of axis (In case of M-2000iA)

Table 0.2.3 (b) Relation of axis (in case of m-2000th)							
	Axis (j)	Motor number	Controller	Connector of AMP			
M-2000 <i>i</i> A	1	J1	CONTROLLER 1	6 axis amplifier (AMP1): CNJ1			
No Aux. Axis AMP	2	J2A	CONTROLLER 1	6 axis amplifier (AMP1): CNJ2			
	3	J3A	CONTROLLER 1	6 axis amplifier (AMP1): CNJ3			
	4	J4	CONTROLLER 1	Aux. axis amplifier (AMP2): CNJ1			
	5	J5	CONTROLLER 2	6 axis amplifier (AMP1): CNJ1			
	6	J6	CONTROLLER 2	Aux. axis amplifier (AMP2): CNJ1			
	7	J2B	CONTROLLER 2	6 axis amplifier (AMP1): CNJ2			
	8	J3B	CONTROLLER 2	6 axis amplifier (AMP1): CNJ3			

Note) J1A and J1B show the tandem axis.

G.3 INSTALLING THE CONNECTION CABLE BETWEEN CABINETS

The connection cable between cabinets (emergency stop cable, optical cable, and earth cable) is disconnected from the controller 1 at shipment.

Install the connection cable between cabinets as shown in the following Fig. G.3.

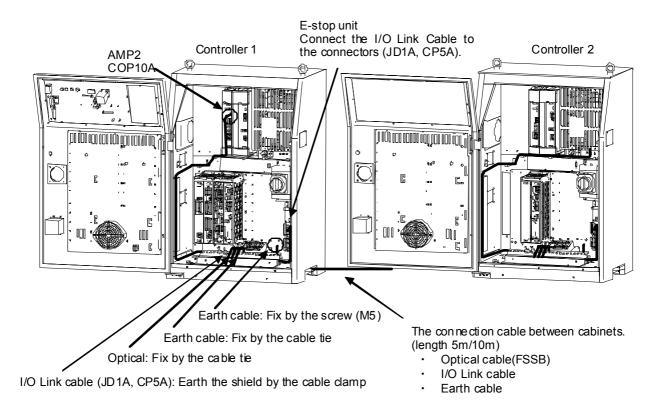


Fig.G.3 Installing the connection cable between cabinets

G.4 ROBOT CONNECTION CABLE

Following is the installation method of robot connection cable for M-900*i*A/200P, M-2000*i*A at installing. Cable route shown in CONNECTION PART Section 3.2.1.

There are two types of the robot connection cable;

Non-flex type: usage is restricted to fixed laying Flex type: possible to use in the cable track

Table G.4 Specification of cable

		Non-flex type			Flex type		
	Robot	Diameter (mm)	Weight (kg/m)	Minimum bending radius (mm)	Diameter (mm)	Weight (kg/m)	Minimum bending radius (mm)
RP1,2	Group9 (M-900 <i>i</i> A/200P)	16.0	0.45	200	-	ı	-
RM1,2,3,4		26.1	1.22	200	-	-	-
RP1, 2	Group10	16.0	0.45	200	-	1	-
RM1,2,3,4	(M-2000 <i>i</i> A)	26.1	1.22	200	-	-	-
EARTH	All models	4.7	0.065	200	4.7	0.065	200

⚠ CAUTION

Before operating the robot, uncoil the interconnection cables from their shipping position to prevent excessive heat, which may damage the cables. (Coiled part should be shorter than 10 meter.)

- Detail of cable connection to servo amplifier

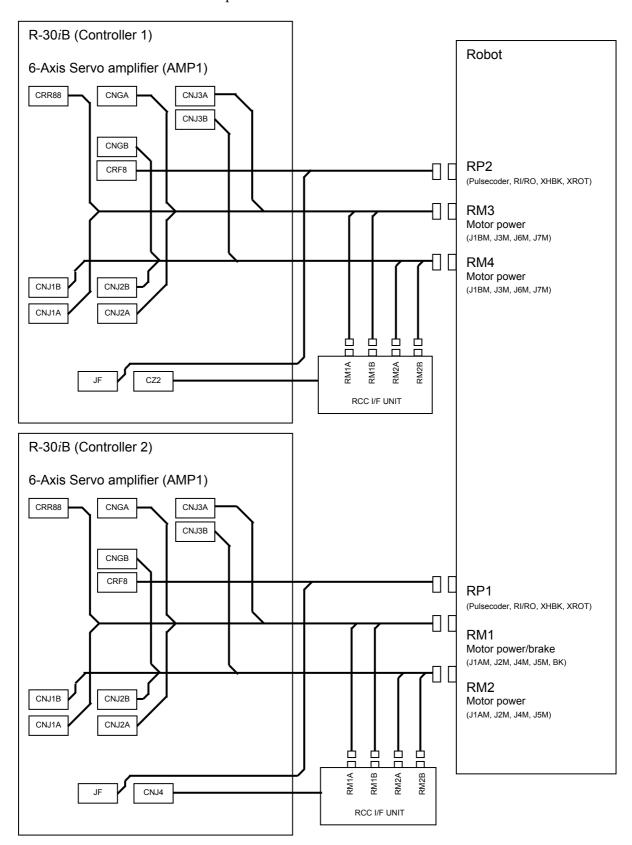


Fig.G.4 (a) Robot connection cable(Group9: M-900iA/200P)

- Detail of cable connection to servo amplifier

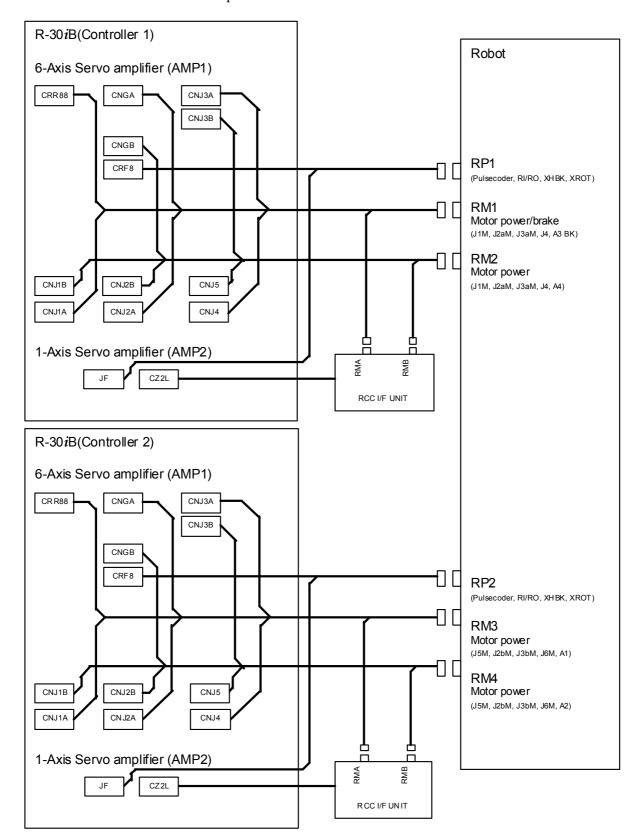


Fig.G.4(b) Robot connection cable (Group10: M-2000iA)

G.5 CONNECTING THE INPUT POWER CABLE

M-900*i*A/200P, M-2000*i*A is composed of two cabinets, and need to connect the power supply with each main breaker as shown in figure G.5.

Refer to CONNECTION PART Chapter 3.2 for the method of connecting the power supply with each main breaker.

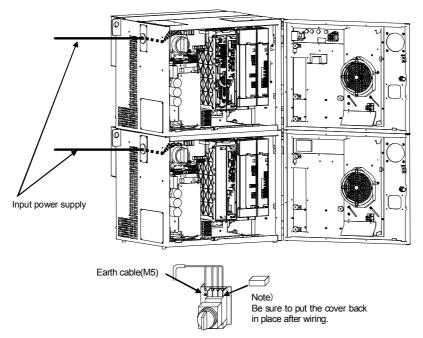


Fig.G.5(a) In case of A-cabinet

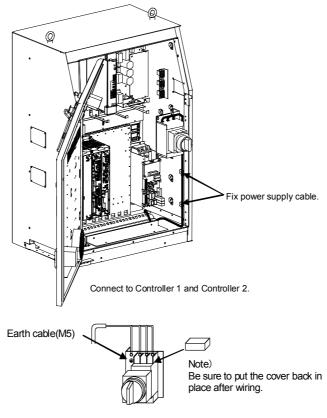


Fig.G.5(b) In case of B-cabinet

G.6 CONFIRMATIONS OF ON/OFF BY THE BREAKER FOR M-900*i*A/200P, M-2000*i*A

- (1) In case of turn on, turn on the MAIN MACHINE DISCONNECT-2 (Breaker of Controller 2) first, and then turn on the MAIN MACHINE DISCONNECT-1 (Breaker of Controller 1). Or turn on both controllers at the same time.
- (2) In case of turn off, turn off the MAIN MACHINE DISCONNECT-1 (Breaker of Controller 1) first, and then turn off the MAIN MACHINE DISCONNECT-2 (Breaker of Controller 2). Or turn off both controllers at the same time.

↑ WARNING

Turn off both MAIN MACHINE DISCONNECT-1 and MAIN MACHINE DISCONNECT-2 before servicing.

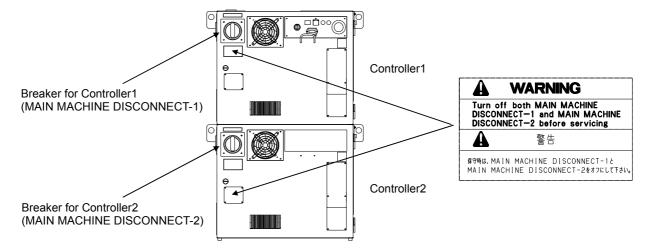


Fig.G.6(a) In case of A-cabinet

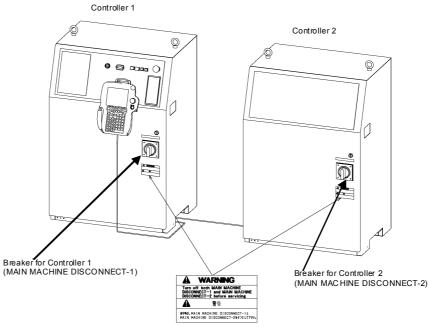


Fig.G.6(b) In case of B-cabinet

G.7 TOTAL CONNECTION DIAGRAM

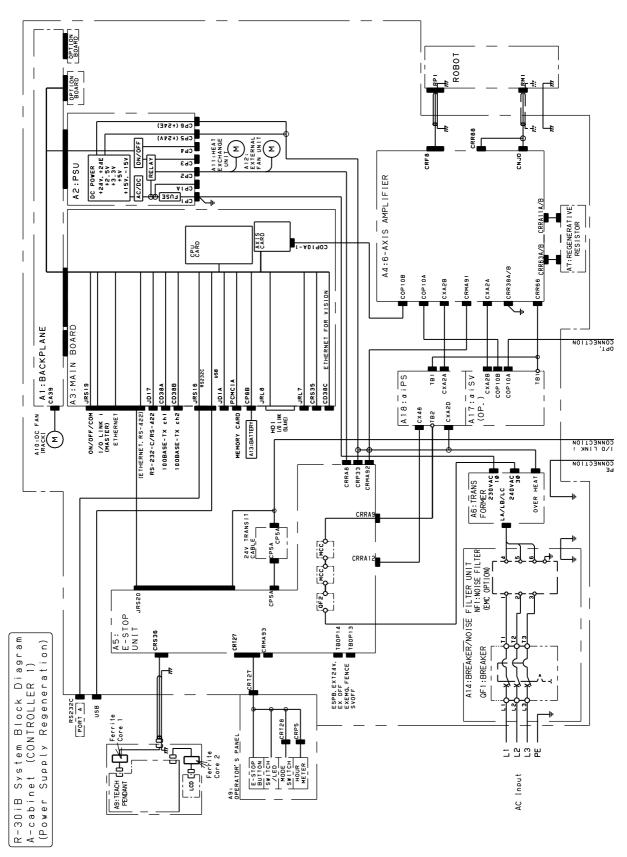


Fig.G.7(a) System block diagram (A-cabinet/Power supply regeneration/Controller 1)

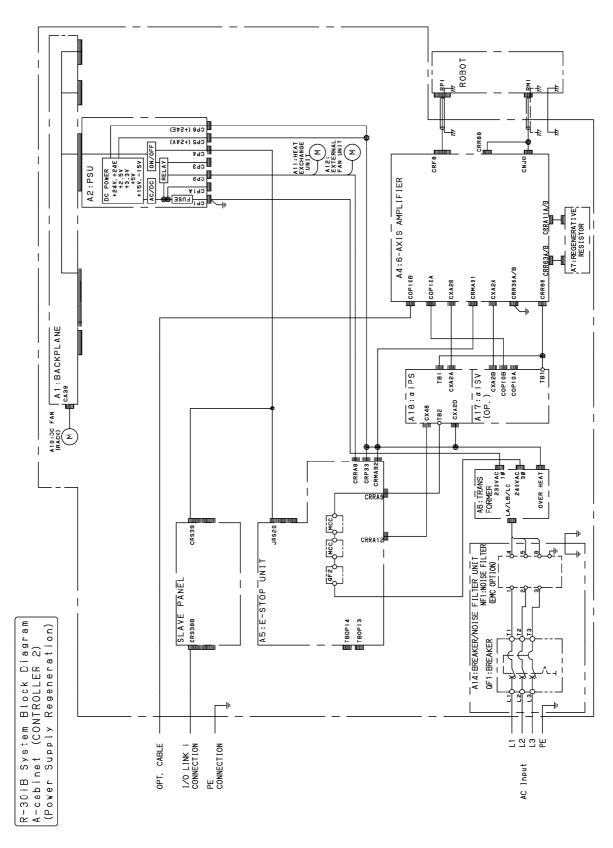


Fig.G.7(b) System block diagram (A-cabinet/Power supply regeneration/Controller 2)

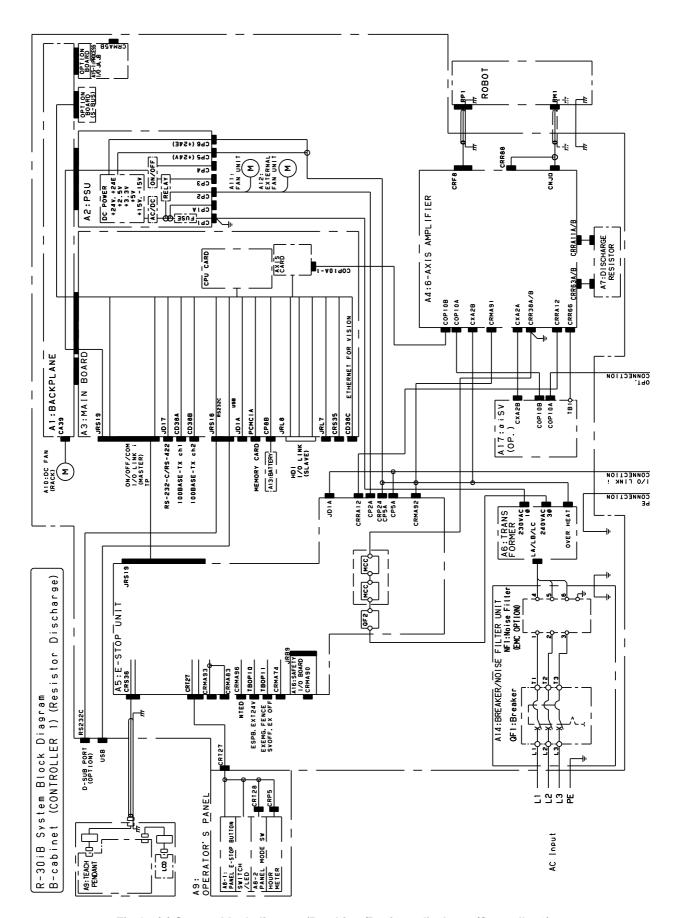


Fig.G.7(c) System block diagram (B-cabinet/Resistor discharge/Controller 1)

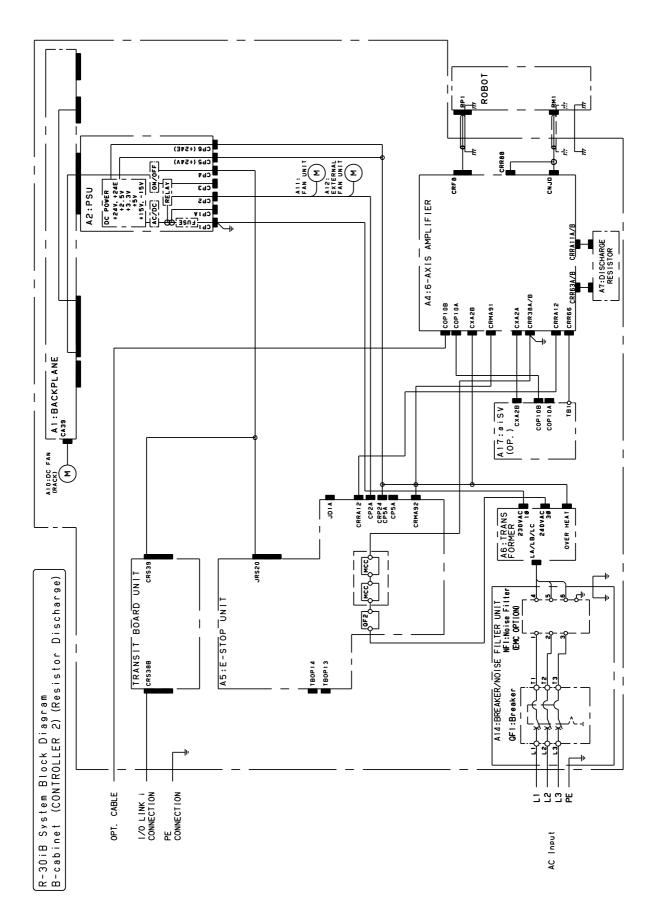


Fig.G.7(d) System block diagram (B-cabinet/ Resistor discharge/Controller 2)

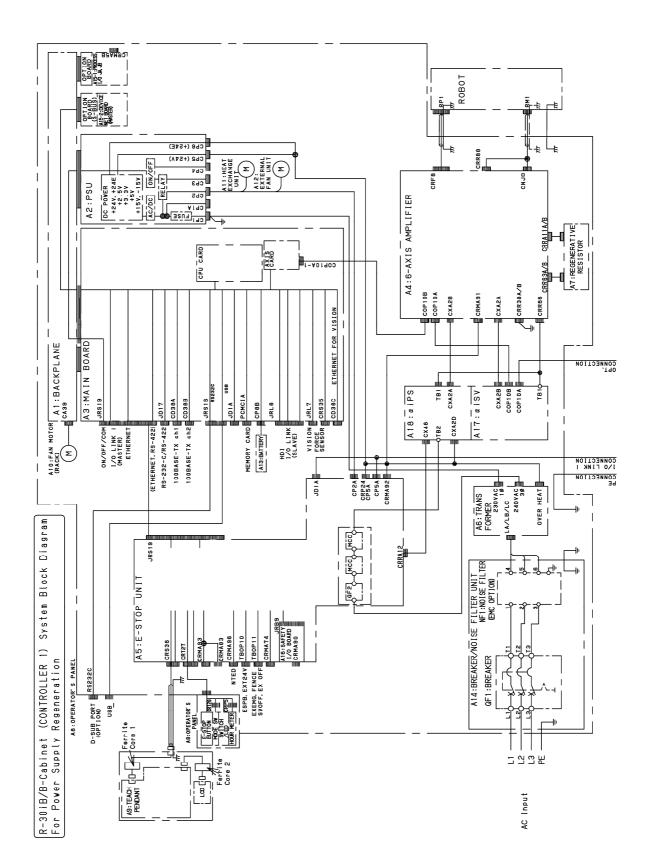


Fig.G.7(e) System block diagram (B-cabinet/Power supply regeneration/Controller 1)

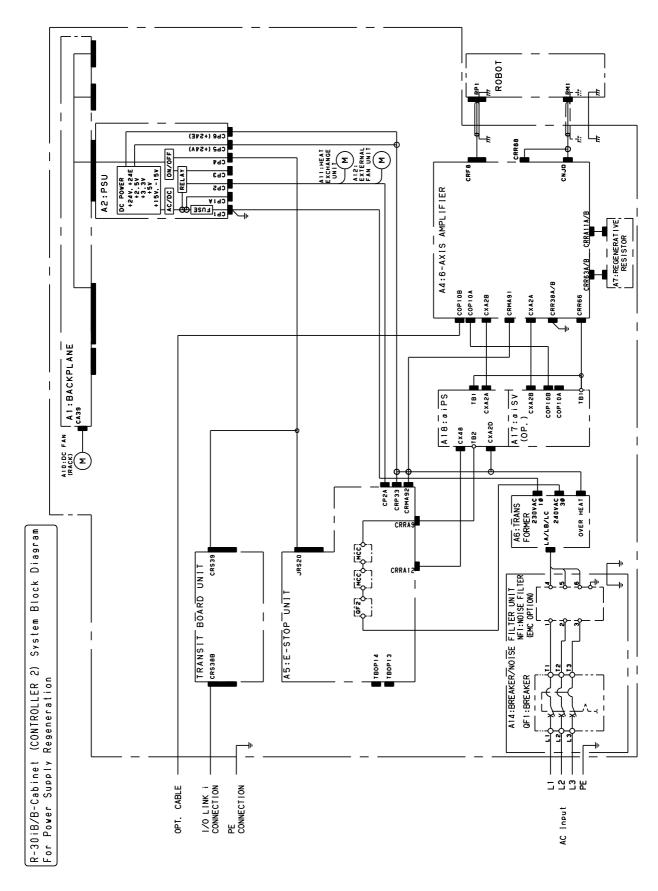


Fig.G.7(f) System block diagram (B-cabinet/Power supply regeneration/Controller 2)

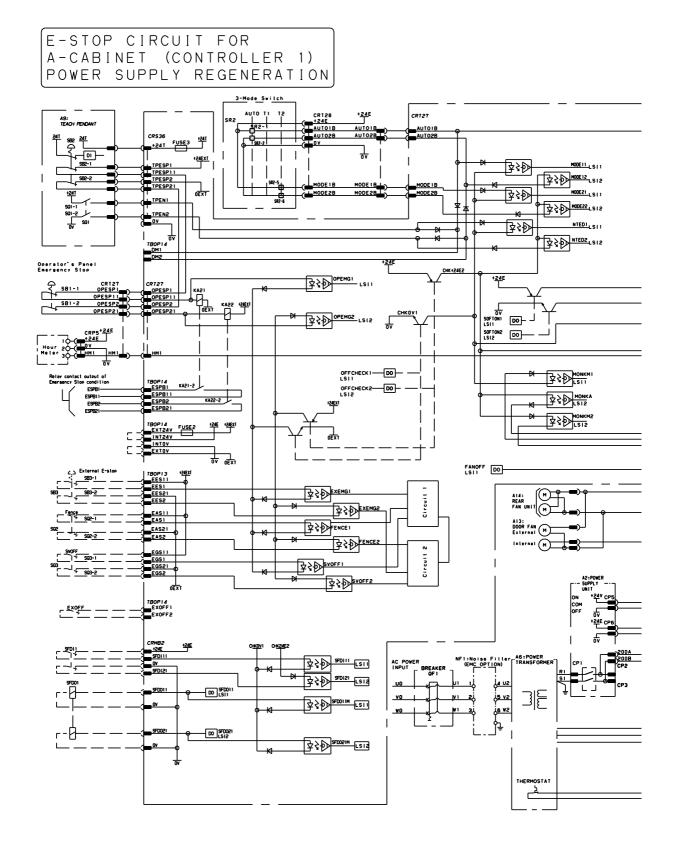
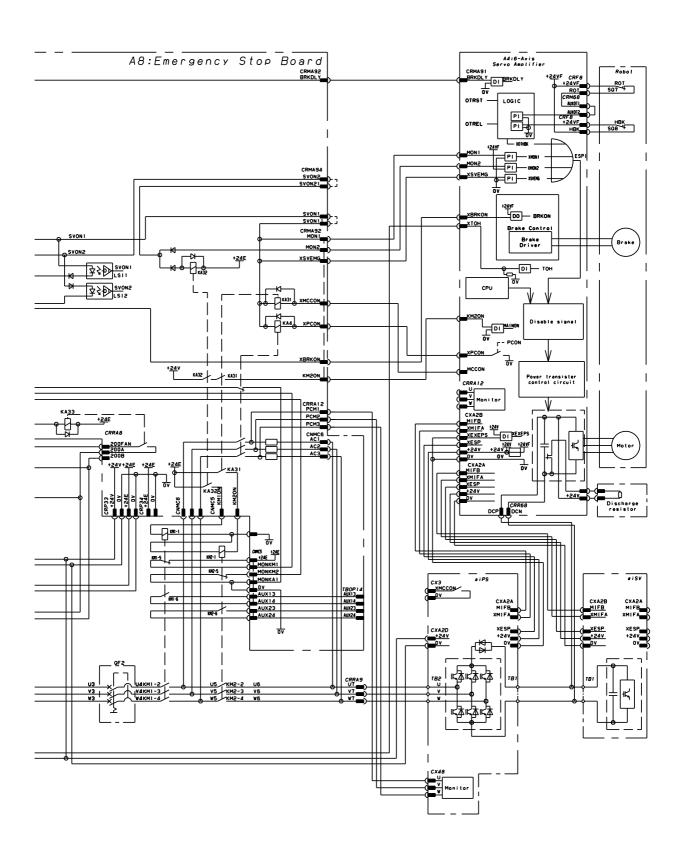
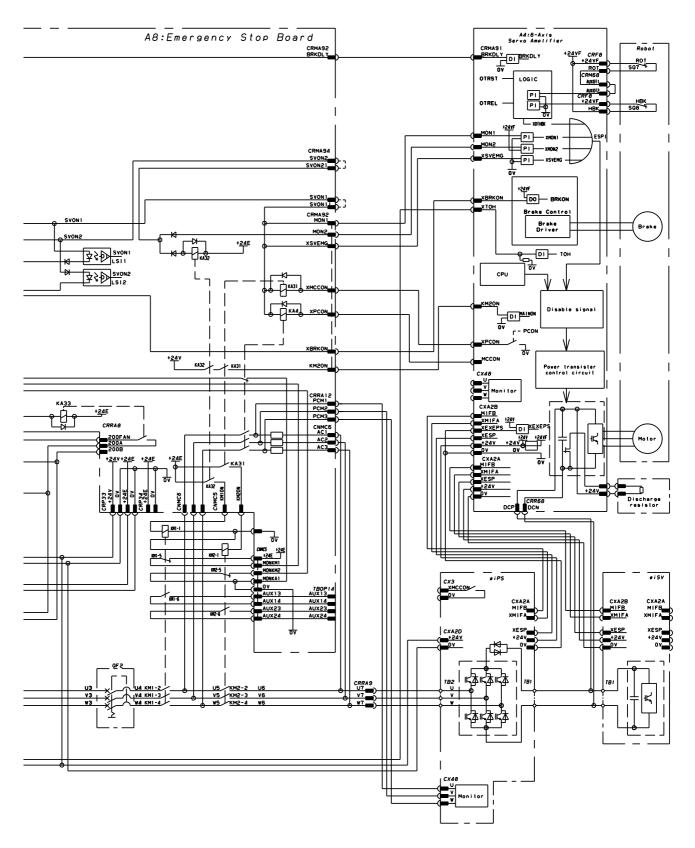




Fig.G.7(g) Emergency circuit connection diagram (A-cabinet/Power supply regeneration/Controller 1)

E-STOP CIRCUIT FOR A-CABINET (CONTROLLER 2) POWER SUPPLY REGENERATION CRS36 +2<u>4EXT</u> द्रि₹₽ 0EXT देश् ⋫₹₽ \$ NIEDS LSIS **₽₹₽**°° DO-SOFTON2 DO OFFCHECK1-DO-录》 MONKM1 OFFCHECK2-__DO KA22-2 录》 MONE D MONKM2 FANOFF DO-Circuit 1 **₽**⋛ÐEXEMGI ⋧⋧⋑⋿ \$ } DFENCE EAS21 №₽ **₽**₹Ðsvoff **₽**⋛ÐSVOFF2 1:Noise Filter (EMC OPTION) **字**₹**№ 8FDIII** [SII] ⋧⋧⋑ DO SFDOI ⊋ÇÐ SFDO1IM [SI] \$ SEDOSIM LS IS

Fig.G.7(h) Emergency circuit connection diagram (A-cabinet/Power supply regeneration/Controller 2)

E-STOP CIRCUIT FOR B-CABINET (CONTROLLER 1) RESISTOR DISCHARGE

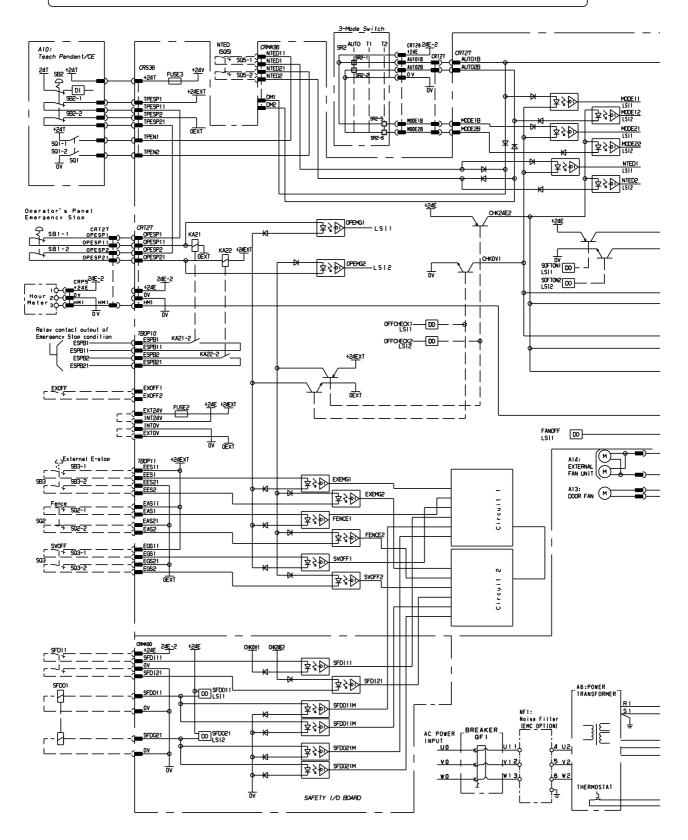
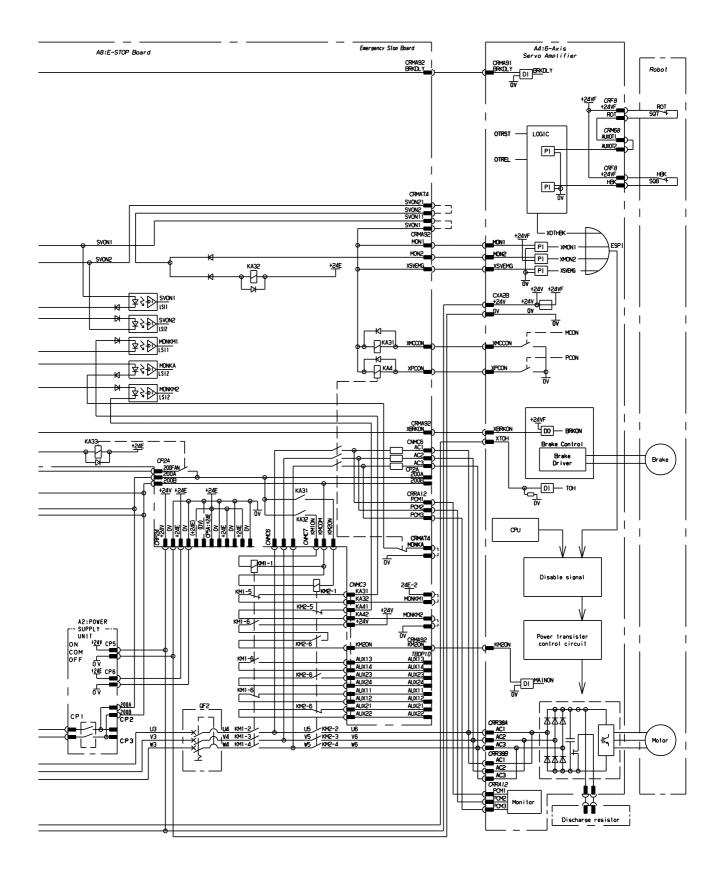



Fig.G.7(i) Emergency circuit connection diagram (B-cabinet/Resistor discharge/Controller 1)

E-STOP CIRCUIT FOR B-CABINET (CONTROLLER 2) RESISTOR DISCHARGE

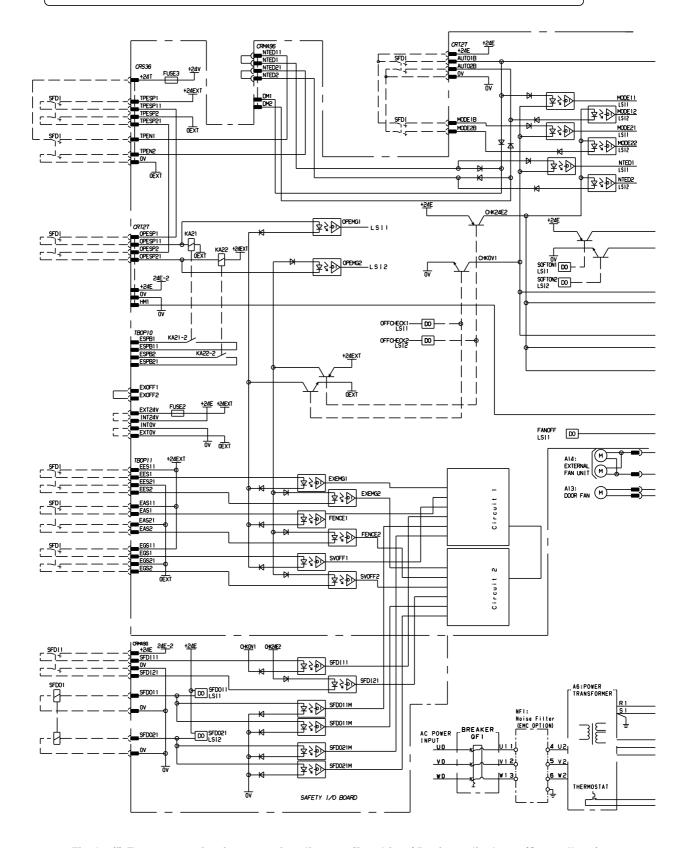
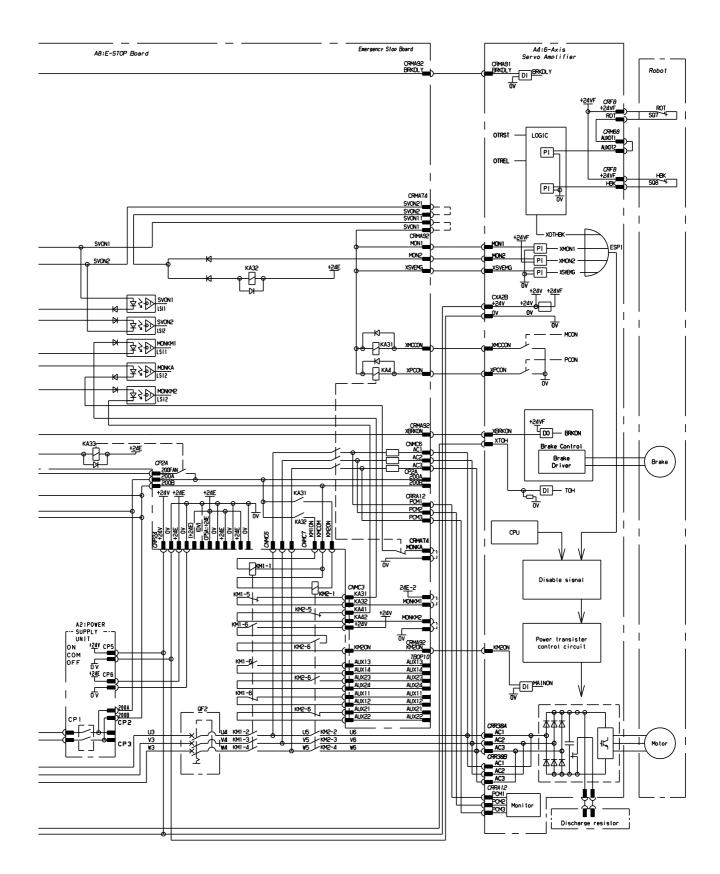



Fig.G.7(j) Emergency circuit connection diagram (B-cabinet/ Resistor discharge/Controller 2)

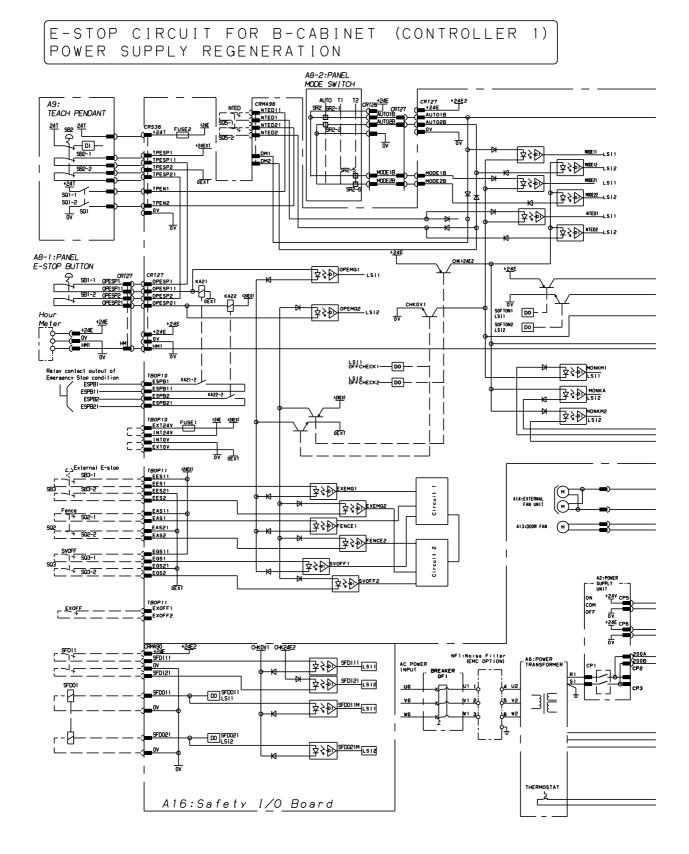
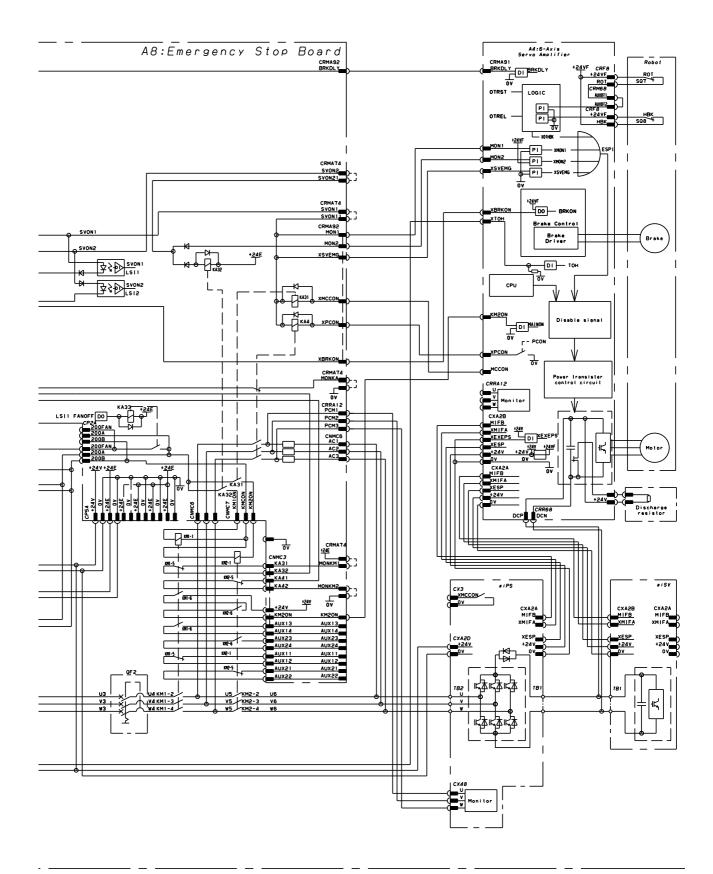



Fig.G.7(k) Emergency circuit connection diagram (B-cabinet/Power supply regeneration/Controller 1)

E-STOP CIRCUIT FOR B-CABINET (CONTROLLER 2)
POWER SUPPLY REGENERATION

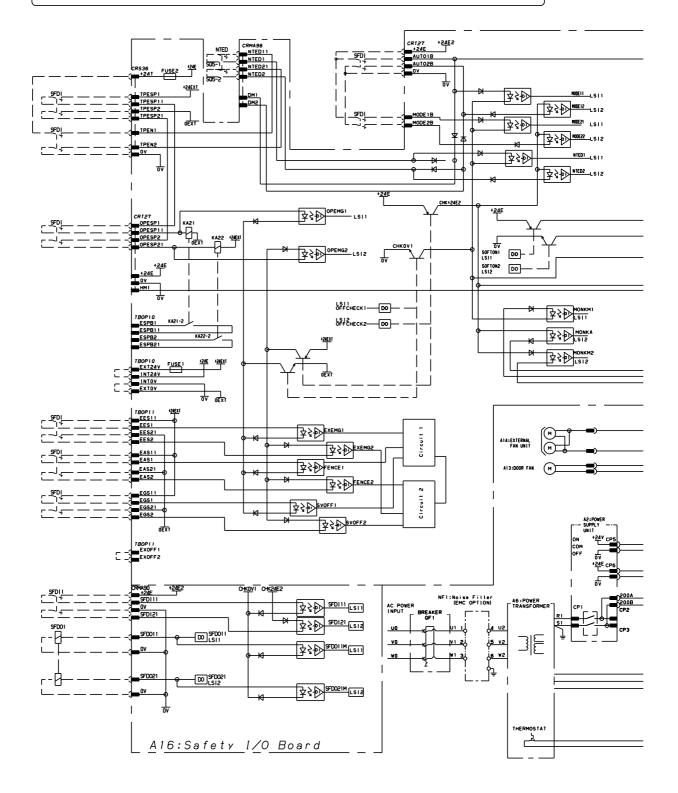
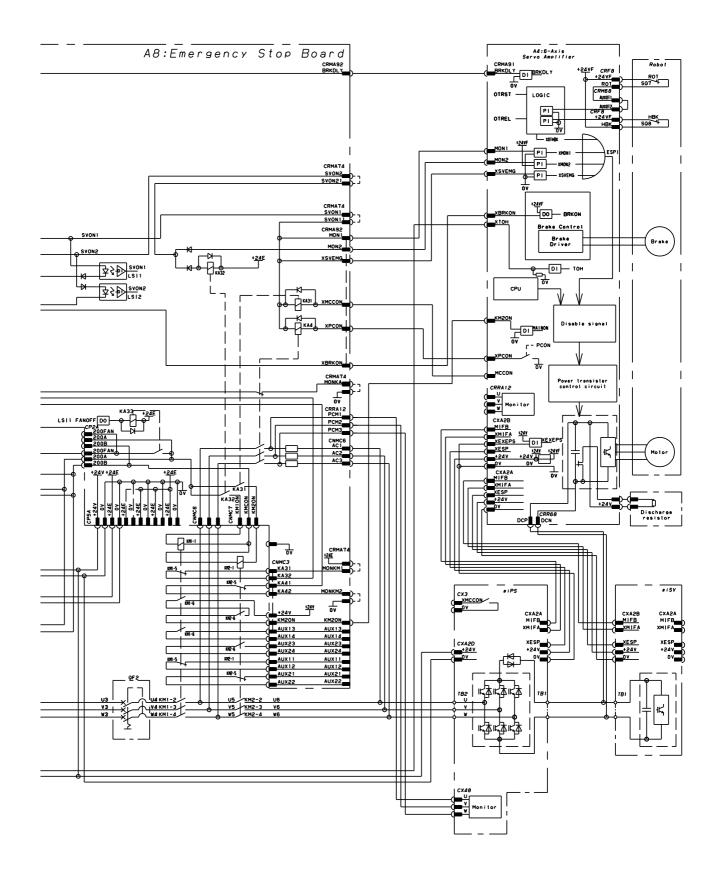



Fig.G.7(I) Emergency circuit connection diagram (B-cabinet/Power supply regeneration/Controller 2)

CONNECTION BETWEEN CONTROLLER 1 AND 2 (A-CABINET)

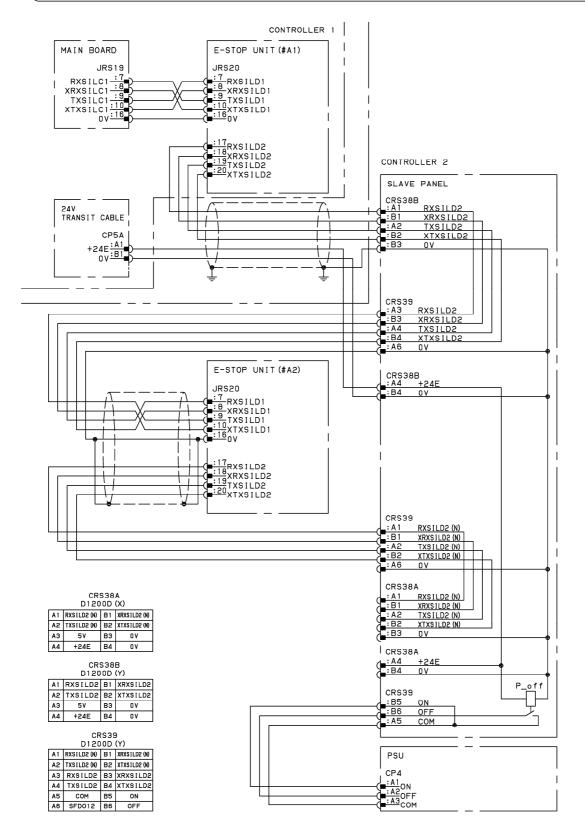


Fig.G.7(m) Connection between controller 1 and 2 (A-cabinet)

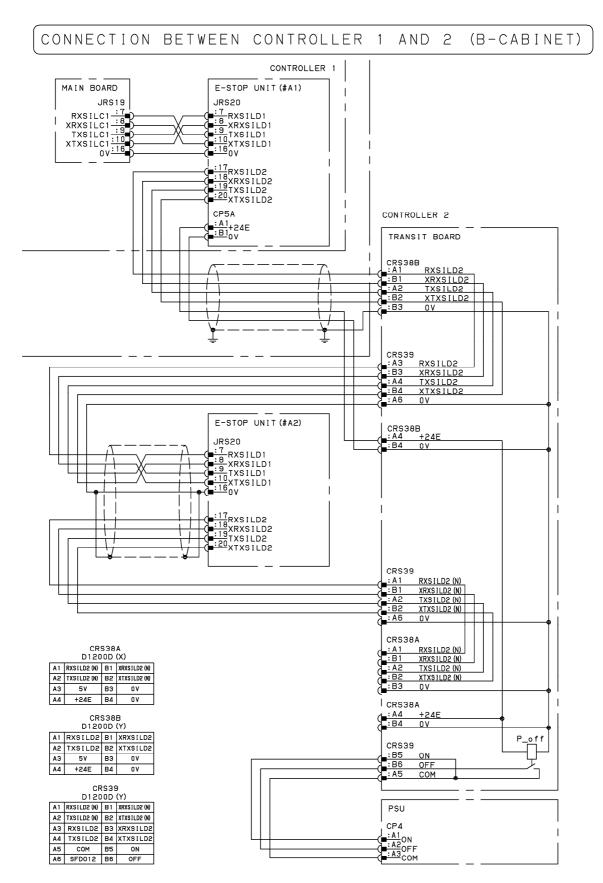


Fig.G.7(n) Connection between controller 1 and 2 (B-cabinet)

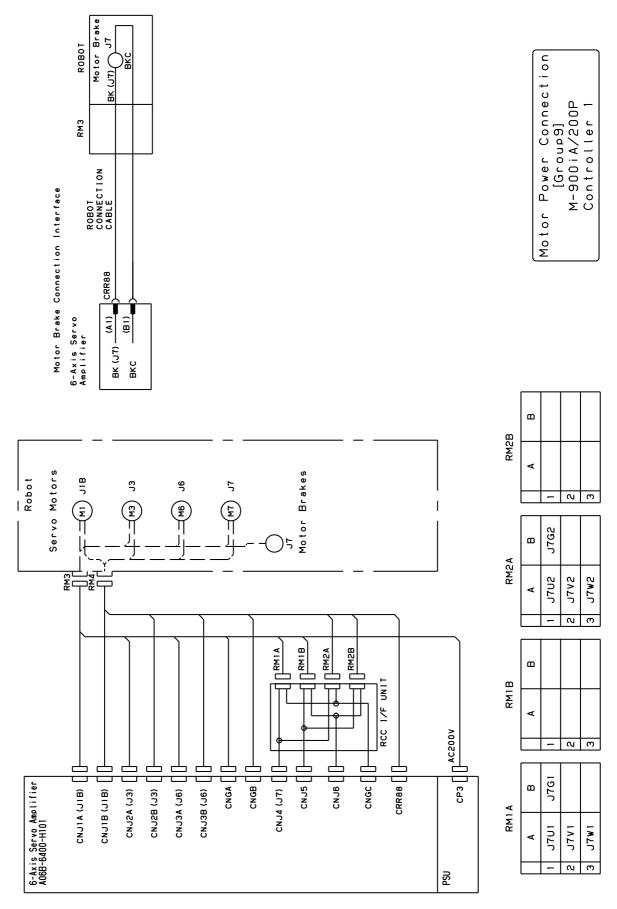


Fig.G.7(o) Motor power connection (Group 9:M-900iA/200P, Controller 1)

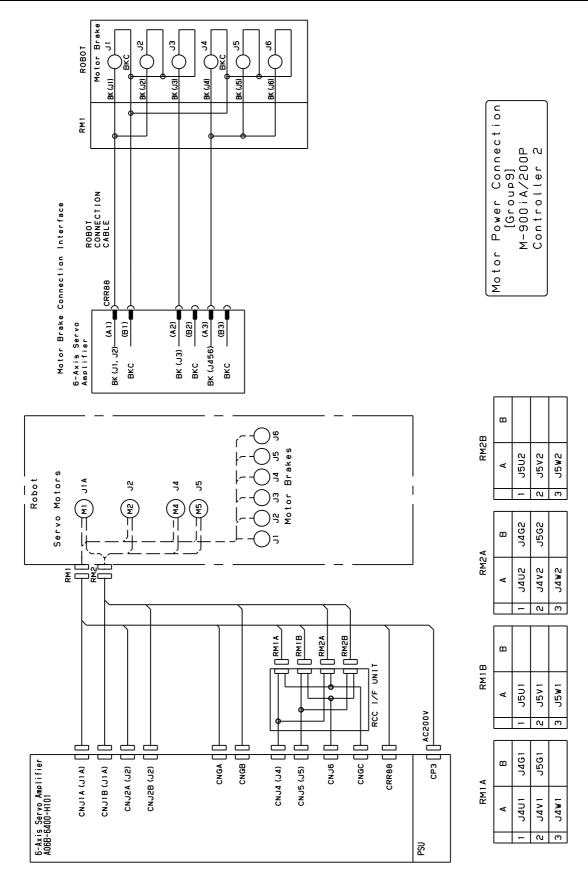


Fig.G.7(p) Motor power connection (Group 9:M-900iA/200P, Controller 2)

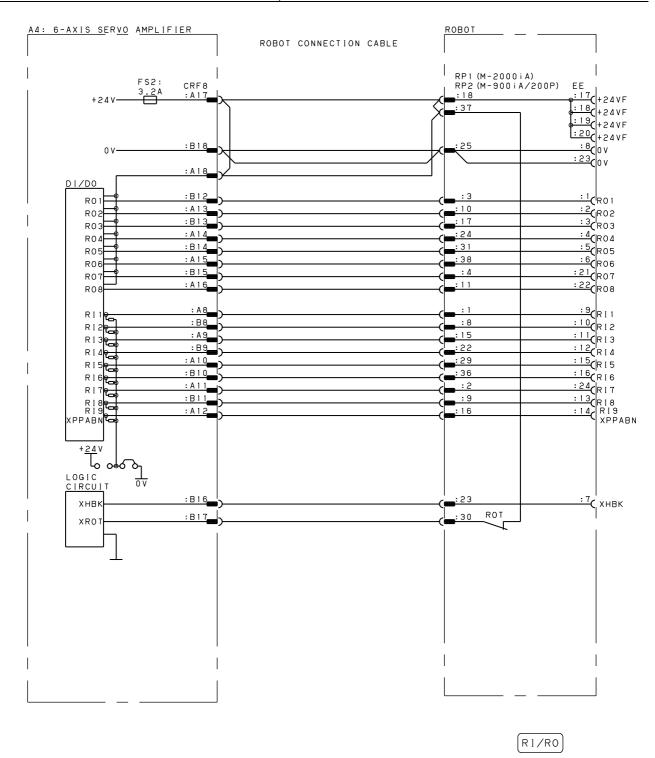


Fig.G.7(q) RI/RO connection diagram (Group 9:M-900iA/200P)

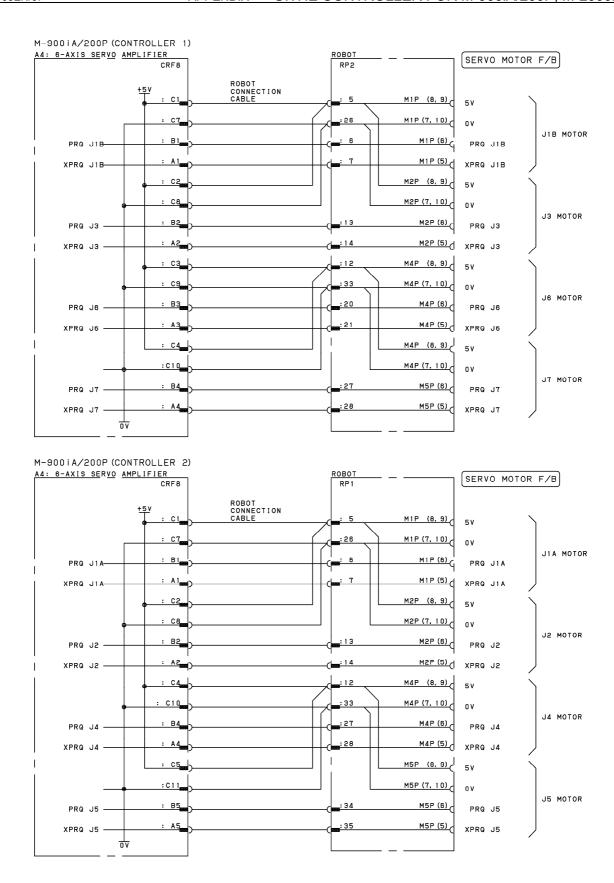


Fig.G.7(r) Pulsecoder signal connection diagram (Group 9:M-900iA/200P)

-									ົວ		J1AG2	JIAG2	JZGZ	JZGZ	T	697	J562				
			24VF (OT)						ke power)		35	36	J2W2 37 J	38	39	0 4 6		J5W2 43		45	46
-		36	37	38	39	40	41	42	RM2 R & Brake	JIAWZ				JZWZ		L				Ļ	
2) –	R I /RO)		XROT			0V (J4, J5)	PRQJ5	XPRQJ5	Po * o T ∑. % ∑. %	J1 AV2 24	40		J2V2 26	J2V2 27	28	29	J4V2 30	J5V2 31	32	000	ה ה
\simeq		29	30	31	32	33	34	35	OR.	4	<u> </u>	2	9	1 2	8	6	20	2	22	ç	
Group9 (CONTROLLER	Signal &		XHBK			0V (J1A, J2)	PRQJ4	XPRQJ4	(MOTOR	-	2 J1 AU2	3 J1AU2	4 J2U2	5 J2U2	0 1	- CIIVI	-	1 0	-1	2	13
ĭ ⊢		22	23	24	25	26	27	28													_
N C C C	RP1 Feedback								POWer)	34 AC200B (1)	J1 AG1	J14G1	, J2G1	J2G1		100			BK (J4)	45 BK (J5)	46 BK (J6)
တ		2	9	7	8	19	0	_					37	38	ee ;	0 4		43	\top	$\overline{}$	$\overline{}$
5	poo	=	=	17	1		50	2	_ Brake eke	U.AW1		UIAWI	J2W1	J2W1			J4W1	J5W1		1	BK (J3)
5	(Pulsecoder					5V (J4, J5)	PRQJ2	XPRQJ2	RM TW8 & E	J1AV1 24		Q U	26	27	28	29	30	31	32	000	33
ı	J	8	ნ	10	11	12 5	13	14 X	9 x 0	JA V		JIAVI	J2V1	J2V1			J4V1	15V1		1	BK (J2)
										14	<u></u>		9	1.7	18	9	50	2	22	600	<u> </u>
						5V (J1A, J2)	PRQJIA	XPRQJ1A	(MOTOR	AC200A (1)	JIAU1	JIAU1	J2U1	J2U1		14111	J5U1		BK (J1)	12 BKC (1)	13 BKC (1)
-		-	2	Э	4	2	9	7		-	٦	ε	4	2	ဖ ၊	- a	0	10		12	13

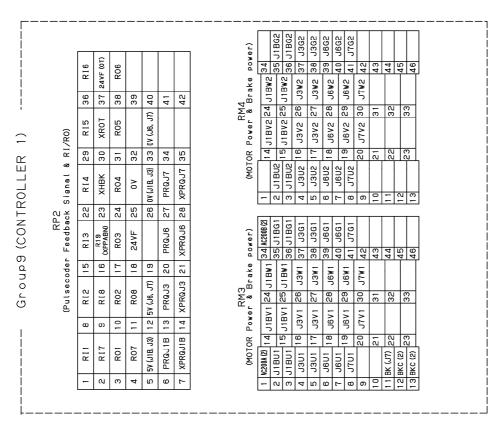


Fig.G.7(s) Mechanical unit interface (Group 9:M-900iA/200P)

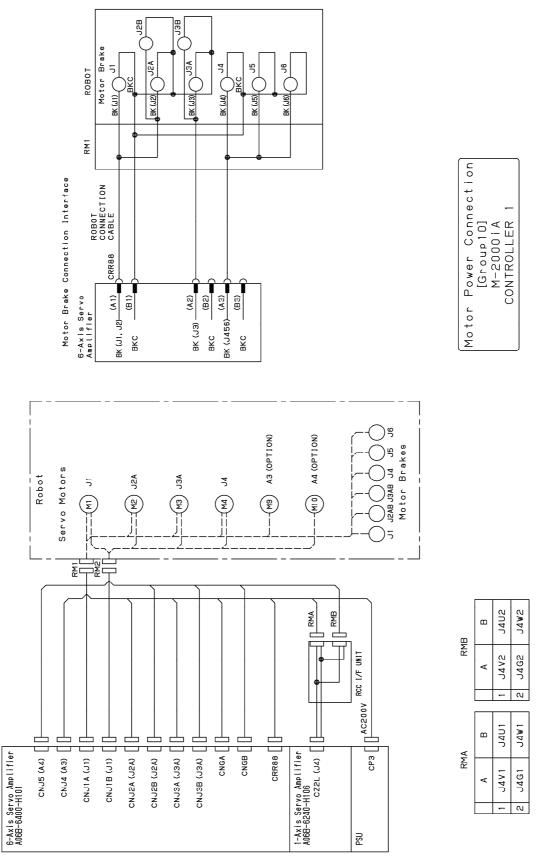


Fig.G.7(t) Motor power connection (Group 10:M-2000iA, Controller 1)

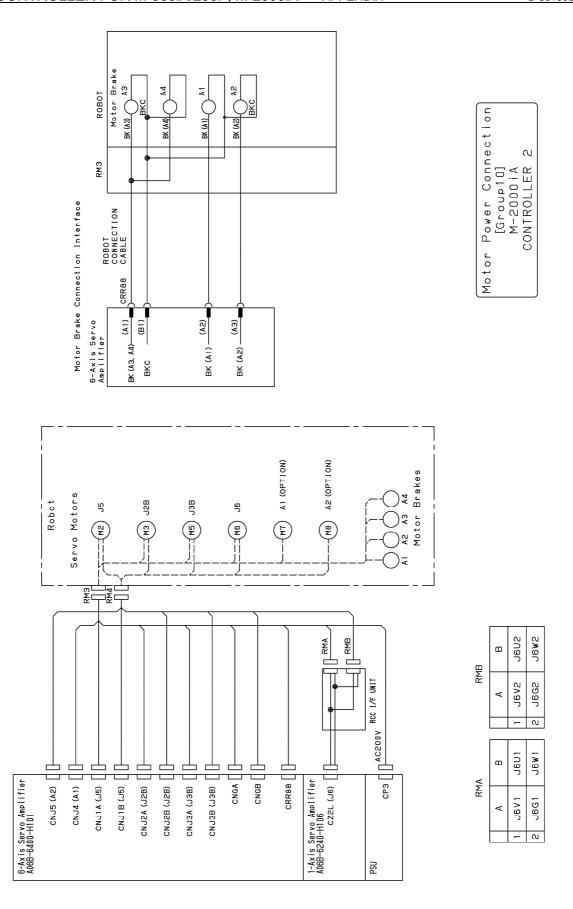


Fig.G.7(u) Motor power connection (Group 10:M-2000iA, Controller 2)

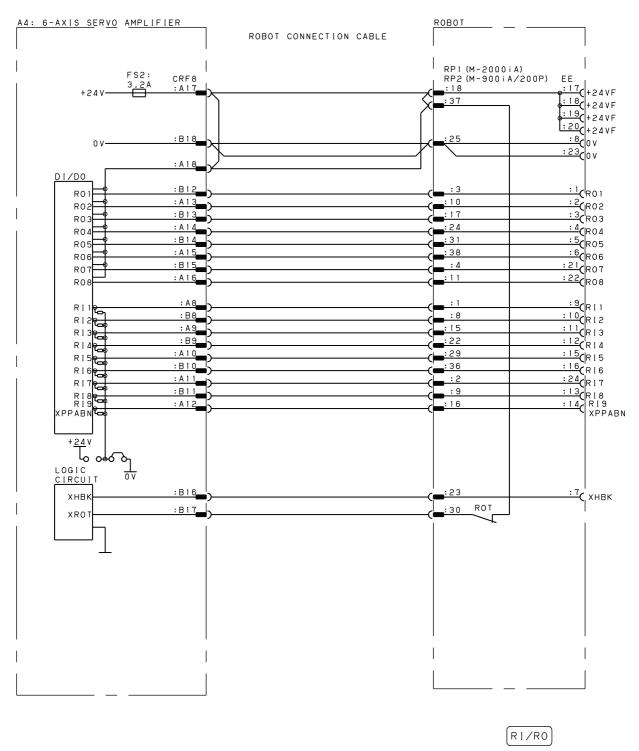


Fig.G.7(v) RI/RO connection diagram (Group 10:M-2000iA)

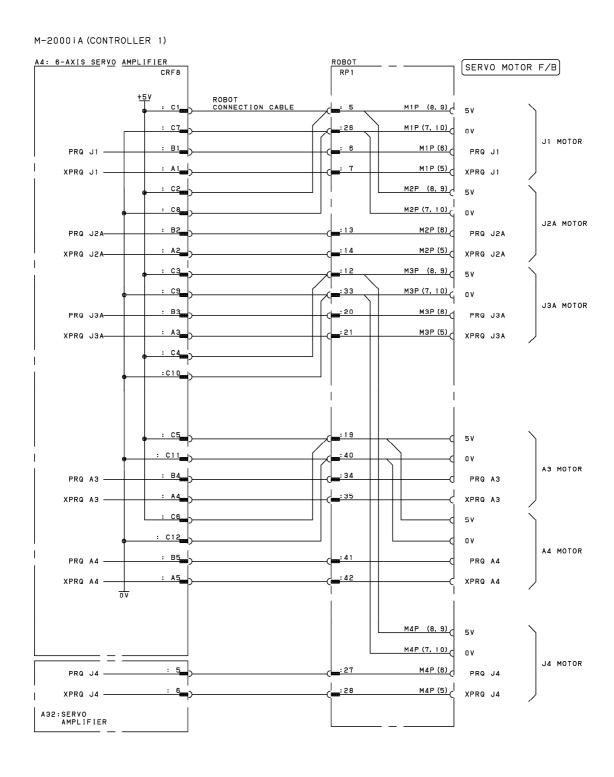


Fig.G.7(w) Pulsecoder signal connection diagram (Group 10:M-2000iA, Controller 1)

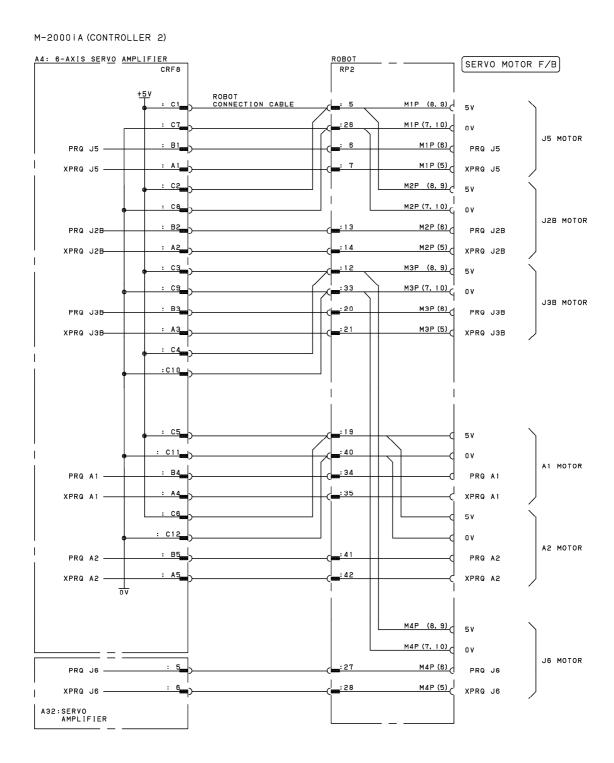


Fig.G.7(x) Pulsecoder signal connection diagram (Group 10:M-2000iA, Controller 2)

Mechanical Interface Group10 M-2000iA

[-									
			24VF (0T)			OV (A1, A2)	PRQA2	XPRQA2	9 POVer) 34 35 J5G2 36 J5G2 2 31 J2G62 2 39 J2G62 2 39 J3G2 2 39 J3G2 2 4 J J6G2 5 J J6G2 5 J J6G2 6 J
}		36	37 24	38	39	40 0	41 P	42 XI	A Brake USWZ USWZ USBWZ USBWZ USBWZ USBWZ USWZ USWZ
5	R1/R0)		XROT			0V (J3B, J6)	PR@A1	XPRQA1	RM4 Brake J5v2 24 J5w2 J2Bv2 25 J5w2 J3Bv2 29 J3Bw2 J3Bw2 J0Bw2 J0
ت د	8 RI	29	30	31	32	33	34	35	
_	Signal 8		XHBK			0V (J2B, J5)	PRQJ6	XPRQJ6	(MOT) (MOT) (MOT) 2 J5U2 4 J2BU2 4 J2BU2 5 J2BU2 6 J3BU2 7 J3BU2 1 J A2U 1 1 A2U 1 A
_ _		22	23	24	25	26	27	28	
(Co.	RP2 Feedback					5V (A1, A2)	РКОЈЗВ	XPRQJ3B	POWEF) 34 35 J5G1 36 J5G1 37 J2BG1 38 J2BG1 39 J3BG1 40 J3BG1 41 J6G1 42 J6G1 44 BK (A2) 45
) (der	5	9 1	17	1.8	1 9 5	20 F	21 X	* 1
Group10 (Control	(Pulsecoder		-			5v (J3B, J6)	PRQJ2B 2	XPRQJ2B 2	RM3 8 Brass 8 Brass
		8	ნ	10	11	12	13	14	Pow 1028 1028 1038
						5V (J2B, J5)	PRQJ5	XPRQJ5	(MOTOR JSU1 15 J SBU1 18 BK (M.) 22 BKC 23 B
j		-	Ŋ	3	4	2	9	7	

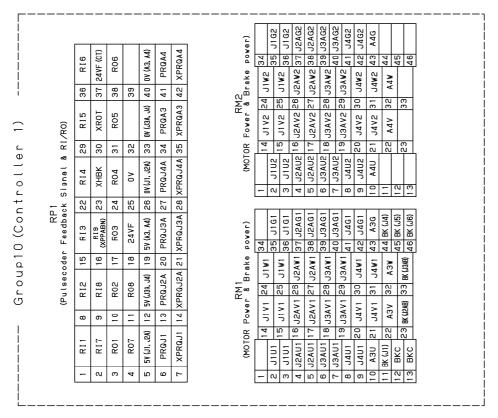
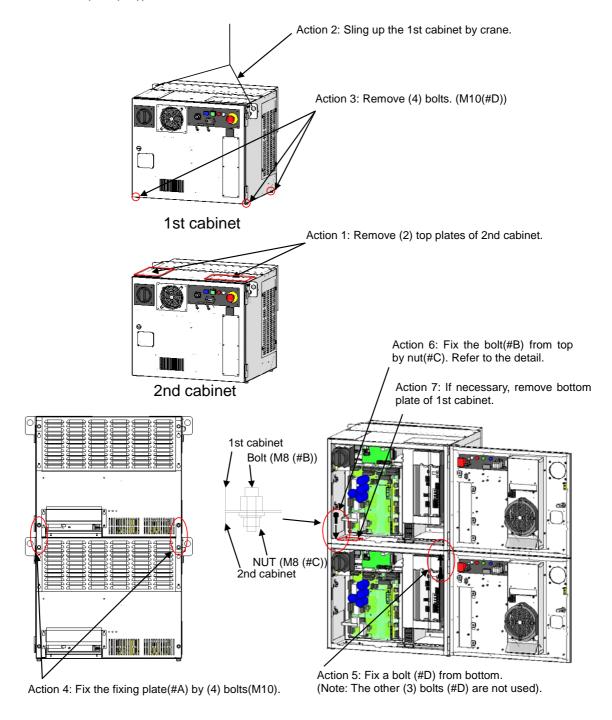


Fig.G.7(y) Mechanical unit interface (Group 10:M-2000iA)


_ _

INSTRUCTION FOR STACKING A-CABINET

This appendix shows an instruction for stacking A-cabinet.

The A-cabinet fixing plate kit (A05B-2601-J342) includes following parts.

- · Fixing plate (#A)
- · Bolt (M8 (#B))
- · NUT (M8 (#C))

TEACH PENDANT DISCONNECT FUNCTION (OPTION)

This appendix shows an instruction for Teach pendant disconnect function (Option).

I.1 CONFIGURATION

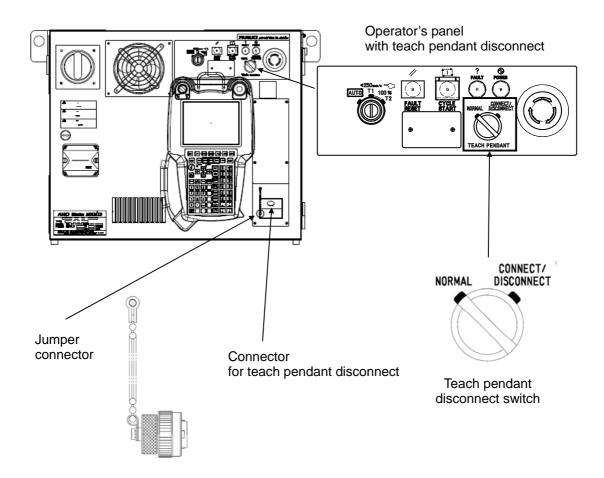
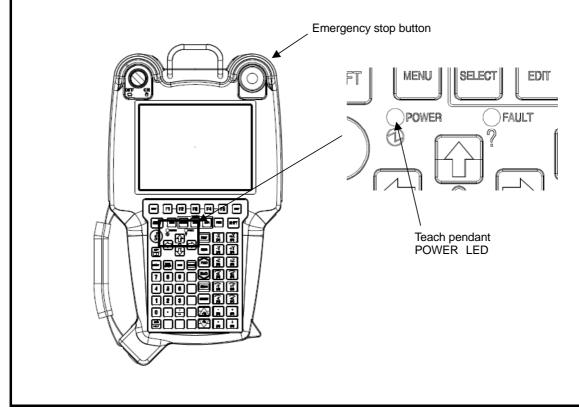


Fig. I.1 Teach pendant disconnect function

1.2 PROCEDURE OF TEACH PENDANT DISCONNECT

I.2.1 Teach Pendant Disconnect

- (1) Set AUTO mode.
- (2) Turn the disconnect switch to "Connect/Disconnect" position. (Robot stops because Operator's panel E-stop Alarm occurs and Power LED of the teach pendant is OFF.)
- (3) Disconnect the teach pendant cable.
- (4) Connect the jumper connector.
- (5) Turn the disconnect switch to "Normal" position.
- (6) Administrator should store the teach pendant and the teach pendant cable in the storage in order to avoid incorrect operation.


I.2.2 Teach Pendant Connect

- (1) Set AUTO mode.
- (2) Turn the disconnect switch to "Connect/Disconnect" position. (Robot stops because Operator's panel E-stop Alarm occurs.)
- (3) Disconnect the jumper connector.
- (4) Connect the teach pendant cable with the teach pendant.
- (5) Turn the disconnect switch to "Normal" position.

! WARNING

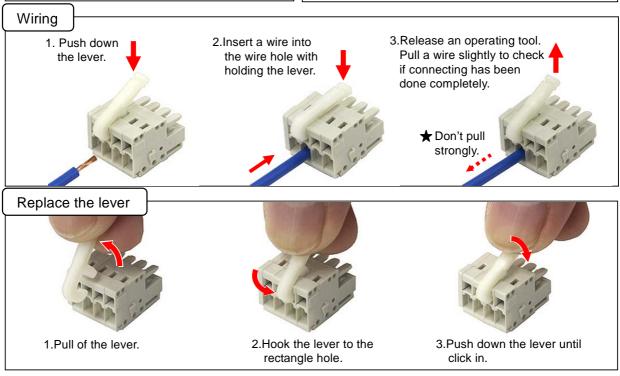
When the LED (POWER) on the teach pendant turned on, this teach pendant is connected to the robot controller and emergency stop button of the teach pendant is active.

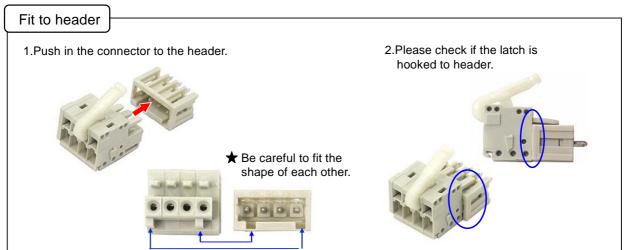
When the LED (POWER) on the teach pendant turned off, This teach pendant is not connected to robot controller and emergency stop button of the teach pendant is not inactive.

J

INSTRUCTION FOR TERMINAL BLOCK

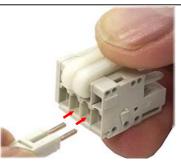
This appendix shows an instruction for external on/off and external emergency stop signal input/output terminal block.


Stripping of Wire Available wire size AWG 28 -14 (0.08 - 1.5mm²) 7mm - Please check a strip length carefully. - Please readjust a loose end. Wiring



- Hold the connector, and push down the lever by finger.
- Don't handle the lever after fit the connector into PCB, otherwise PCB will be damaged by handling stress.

Operating Lever Item No. **734-230**



Installation of Jumper

1. Attach two levers to the connector.

2.Hold down levers at the same time, then put the jumper into the connector.

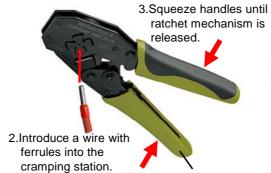
★ Please confirm that the jumper is fully inserted.

Availability of wires

Without jumpers

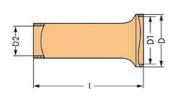
Max wire size 1.0mm² (AWG18) (with Ferrule)

With jumpers



The wire cannot connect, when attached the jumper.

Installation of Ferrules

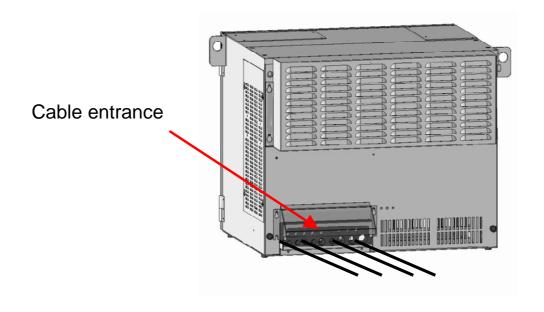

1.Put a wire through the hole of ferrules.

4.Please check if the wire crimped correctly.

Specifications of Ferrules

WAGO Item No.	Sleeve for mm ² (AWG)		Stripped length(mm)	L (mm)	L1	D	D1	D2
216-301	0.25 (24)	Yellow	9.5	12.5	8.0	2.5	2.0	0.8
216-302	0.34 (24)	Turquoise	9.5	12.5	8.0	2.5	2.0	0.8
216-201	0.5 (22)	White	9.5	13.5	8.0	3.0	2.5	1.1
216-202	0.75 (20)	Gray	10.0	14.0	8.0	3.3	2.8	1.3
216-203	1.0 (18)	Red	10.0	14.5	8.0	3.6	3.0	1.5

★ CAUTION! Please make sure to use WAGO 206-204 to crimp the ferrules.


Pack-unit 100

K

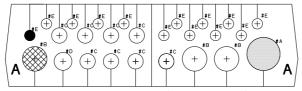
SEALING OF THE CABLE ENTRANCE OF THE CABINET

K.1 CABLE ENTRANCE FOR A-CABINET

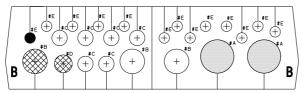
The external cables are connected through the cable entrance located on the rear surface of controller. The cable entrance consists of a hood, frame and Cable Seal Block with multiple circular shaped holes for cable sealing. There are different types of Cable Seal Block; the type used is determined by the controller and robot configuration. When all customer supplied cables are connected through the cable entrance, it may be necessary to increase the cable diameter of some cables to maintain an adequate seal at the cable entrance. It is also necessary to confirm Cable Seal Block has enough holes for all system and option cables. The number of available sealing holes for customer supplied cables varies depending on robot type and options. Reference the following illustrations.

↑ CAUTION

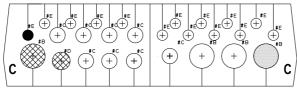
If the cable diameter is not suitable for the hole size of Cable Seal Block, controller problems may occur because of insufficient environmental sealing of controller.

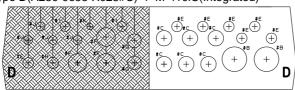

Without proper cable entrance sealing, airborne contaminates, both non-conductive and conductive may enter the interior of the controller. Foreign particulate entering the controller can have an impact on controller operation and reliability.

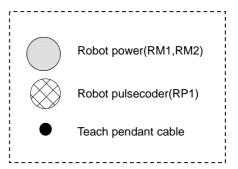
When customer supplied cables are connected through the cable seal entrance, the diameter of these cables should be adjusted to a suitable cable diameter to ensure proper controller cabinet sealing. Reference the following illustrations.


K.2 HOLES OF CABLE SEAL BLOCK FOR CABLE

The cutout of Cable Seal Block at the cable Entrance is shown as follows (Rear side view).


Type A(A230-0653-X028#A): R-2000iB(except 200T,220U), R-2000iC, R-1000iA, M-710iC, M-420iA


Type B(A230-0653-X028#B): M-900iA/350, M-410iB(Separated), R-2000iB/200T,220U, M-2000iA



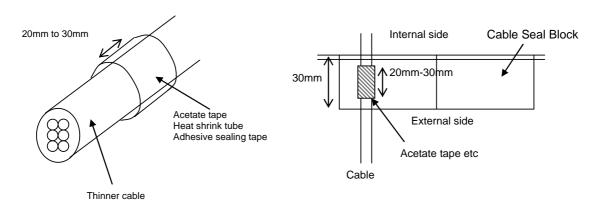
Type C(A230-0653-X028#C): ARC Mate series, M-430iA, F-200iB

Type D(A230-0653-X028#C) : M-410iC(Integrated)

Hole		Т	Type A		A Type B		Type C		ype D	Application (Include options)
type	Diameter	Qty	For Options	Qty	For Options	Qty	For Options	Qty	For Options	
#A	φ27mm	1	0	2	0	0	0	0	0	Robot power (RM1,RM2)
#B	φ20mm	3	2	3	2	4	2	2	2	Robot Pulsecoder Thick/Flex(RP1) Robot power(RM1)
#C	φ 12.5mm	8	8	6	6	8	8	6	6	Aux axis power, I/O Line tracking, Switch box DeviceNet Thick cable
#D	φ 14.5mm	1	0	1	0	1	0	0	0	Robot Pulsecoder(RP1)
#E	φ 8.5mm	13	12	13	12	14	13	7	6	Aux brake/Pulsecoder Camera, Ethernet DeviceNet Thin cable Teach pendant cable

K.3 SUITABLE CABLE DIAMETER

The suitable cable diameter for option cables are shown on the following table.

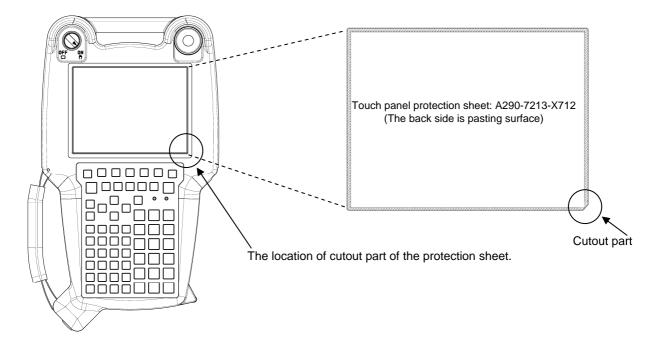

Hole type	Nominal	Tolerance	Suitable diameter	Q'ty Type A	Q'ty Type B	Q'ty Type C	Q'ty Type D
#B	φ20mm	±1mm	ϕ 19mm-21mm	2	2	2	2
#C	φ12.5mm	±1mm	φ11.5mm-13.5mm	8	6	8	6
#E	φ8.5mm	±1mm	φ7.5mm-9.5mm	12	12	13	6

NOTE

The holes for options(#B,#C,#E) are used for all options(Aux. axis, I/O, Network, Sensor). So confirm that the available holes are enough for all option cables.

K.4 ADJUST THE CABLE DIAMETER

To maintain proper sealing of controller enclosure, it may be necessary to adjust some cable diameters to work with an available cable port diameter. If the diameter of any cable is smaller than an available sealing port in the Cable Seal Block, increase the cable diameter to an appropriate diameter by applying acetate tape, adhesive sealing tape or heat shrink tubing over the cable jacket. If a foam type sealing tape is used, adjust the diameter to the compression state of foam for a particular cable diameter. The finished diameter of all cables should maintain an interference fit with Cable Seal Block. All unused cable ports must be plugged to ensure controller is sealed against contaminants. Sealing frame and hood must also be properly installed.



REPLACING THE PROTECTION SHEET

This appendix shows an instruction for replacing the protection sheet of the iPendant with touch panel.

Replacement procedure

- 1. Remove old protect sheet.
- 2. Peel clear sheets pasted on both side of the new protect sheet.
- 3. Paste the protect sheet so that the cutout part is placed on the lower right portion.

INDEX

	Connection between the Process I/O Board KA, KB and
<number></number>	Welding Machines21
100BASE-TX Connector (CD38A, CD38B) Pin	Connection between the Process I/O Board MA and
Assignments237	Peripheral Devices
6-AXIS SERVO AMPLIFIER SPECIFICATIONS 114	Connection between the Process I/O Board MB and
6-AXIS SERVO AMPLIFIERS109	Welding Machines20
	CONNECTION DIAGRAM BETWEEN
<a>	MECHANICAL UNITS15
ADJUST THE CABLE DIAMETER386	CONNECTION OF HDI23
ADJUSTMENT AND CHECKS AT INSTALLATION255	Connection of I/O Link
ALARM OCCURRENCE SCREEN16	Connection of the I/O Link Cable
Alarms Detected by Servo Amplifier339	Connection to Ethernet 23
ARC Weld Connection Cables (CRW11; TE	Commedian to Emerica
Connectivity 20 pin)222	<d></d>
Assemble at Installation252	DIGITAL I/O SIGNAL SPECIFICATIONS21
	DIMENSION
	DIME (SIGN)
BACKPLANE99	<e></e>
Battery for Memory Backup (3 VDC)145	EE INTERFACE213,21
BLOCK DIAGRAM150	ELECTRICAL CONNECTIONS15
BLOCK DIAGRAM OF THE POWER SUPPLY115	Electrical Noise Countermeasures
BRAKE RELEASE UNIT326	EMERGENCY STOP BOARD
	A-cabinet: A20B-2200-0650/B-cabinet: A20B-2102-0
<c></c>	0509
CABLE CONNECTION FOR THE PERIPHERAL	End Effector Cable Connector (EE interface)22
DEVICES, END EFFECTORS, AND ARC	Ethernet Interface 23
WELDERS223	EXTERNAL CABLE WIRING DIAGRAM15
CABLE ENTRANCE FOR A-CABINET384	EXTERNAL VIEW OF THE CONTROLLER
Check input voltage166	EXTERIME VIEW OF THE CONTROLLER
Check Items at Installation243	<f></f>
CHECKING THE POWER SUPPLY UNIT	FANUC I/O LINK15
(A16B-2203-0910)118	FUSE
COMPONENT FUNCTIONS9	FUSE-BASED TROUBLESHOOTING7
CONFIGURATION4,337,380	TOSE BROED TROOBLESHOOTH (C
CONFIRMATIONS BEFORE OPERATION326	<g></g>
CONFIRMATIONS OF ON/OFF BY THE BREAKER	GENERAL 14
FOR M-900 <i>i</i> A/200P, M-2000 <i>i</i> A346	
Connecting HDI	<h></h>
Connecting the Auxiliary Axis Brake (CRR65 A/B)178	HOLES OF CABLE SEAL BLOCK FOR CABLE38
Connecting the Auxiliary Axis Over Travel (CRM68) 179	HOW TO CONNECT THE PLUG TO THE POWER
CONNECTING THE COMMUNICATION UNIT233	CABLE (IN CASE OF NO POWER PLUG)33
Connecting the External Emergency Stop	How to Disable/Enable HBK25
Connecting the External Power Supply ON/OFF Switch	How to Disable/Enable Pneumatic Pressure Alarm
166	(PPABN)
Connecting the Input Power	HOW TO USE THE PLATE TO FIX THE COMPACT
Connecting the input power cable	FLASH MEMORY CARD33
Connecting the Non-Teaching Enabling (NTED) Signal	1 2.1011 112.110111 0.110
(CRMA96)(For B-cabinet)177	
CONNECTING THE SENSOR CONNECTION	I/O Signal Specifications for ARC-Welding Interface
CABLE244	(A-cabinet/Process I/O Board MB)21
CABLE	I/O SIGNALS
	In case of A-cabinet
Composition between the Machanical Unit and End	In case of B-cabinet
Connection between the Mechanical Unit and End	In Case of Operating to the Auxiliary Axis
Effector	In Case of Operating to the Robot
	Input Signal Rules for the High-speed Skin (HDI) 23

INDEX
B-83195EN/07

Input Signals	315	PROCESS I/O BOARD JB (A16B-2204-0011)	101
Input/Output Hardware Usable in the R-30iB Contro	ller	PROCESS I/O BOARD KA	
	321	(A20B-2101-0560)	105
INSTALLATION	246	PROCESS I/O BOARD KB	100
INSTALLATION CONDITION	253	(A20B-2101-0561)	107
Installation Method	246		
INSTALLING THE CONNECTION CABLE		PROCESS I/O BOARD MA (A20B-2004-0380)	
BETWEEN CABINETS	341	PROCESS I/O BOARD MB (A20B-2101-0730)	
INSTRUCTION FOR STACKING A-CABINET	379	PROCESS I/O BOARD SIGNALS	188
INSTRUCTION FOR TERMINAL BLOCK	382	< <i>R</i> >	
Interface	233	Recommended Cables	220
INTERFACE FOR PERIPHERAL DEVICES	191	Relationship of Axis	
INTERFACE FOR WELDER	208	Replacing a Module	
		REPLACING BATTERY	
<l></l>			143
Leading out the Ethernet Cable		REPLACING CARDS AND MODULES ON THE	122
Leakage breaker	165	MAIN BOARD	
LEDS OF SERVO AMPLIFIER	112	Replacing External Fan Unit and Door Fan (B-cabine	
LEDS ON UNITS SUPPORTING I/O LINK i	94	REPLACING I/O UNIT-MODEL A	
		Replacing Rear Fan Unit (A-cabinet)	
<m></m>		REPLACING SERVO AMPLIFIERS	
MAIN BOARD	96	REPLACING THE AC FAN MOTOR	
MANUAL OPERATION IMPOSSIBLE	93	Replacing the Backplane Board (Unit)	
MASTERING		Replacing the Base Unit of I/O Unit-MODEL A	139
Meanings of LEDs on Units Supporting I/O Link i	94	REPLACING THE CONTROL SECTION FAN	
_		MOTOR	
<0>		REPLACING THE EMERGENCY STOP BOARD.	
On/off timing by the breaker		REPLACING THE E-STOP UNIT	128
OPERATION		Replacing the Heat Exchanger and Door Fan Unit	
OPTICAL FIBER CABLE		(A-cabinet)	
Output Signals	318	Replacing the Power Unit and Printed-Circuit Boards	
OVERVIEW	3,321	the Backplane	
4 . D.		REPLACING THE PRINTED-CIRCUIT BOARDS.	
<p></p>		REPLACING THE PROTECTION SHEET	387
Peripheral Device and Controller Connection (Source		REPLACING THE REGENERATIVE RESISTOR	
Type DO)		UNIT	
Peripheral Device Cable Connector		REPLACING THE TEACH PENDANT	
Peripheral Device Connection Cable		REPLACING THE TRANSFORMER	
Peripheral Device Interface A		REPLACING UNITS	
Peripheral Device Interface A Cable (CRMA5*: Hor		Resetting Overtravel	
Tsushin, 50 pins)		RESETTING OVERTRAVEL AND EMERGENCY	
Peripheral Device Interface B Cable (CRMA6*: Hor		STOP AT INSTALLATION	
Tsushin, 20 pins)	221	ROBOT CONNECTION CABLE	
Peripheral Device Interface B1 and B2 Cables		Robot Connection Cables	
(CRMA52; TE Connectivity 30 pin)	222	RS-232-C Interface	
PERIPHERAL DEVICE INTERFACE BLOCK		RS-232-C interface signals	233
DIAGRAM	183	105	
Peripheral Device Interface Processing	255	<\$>	
PERIPHERAL DEVICE, ARC WELDING, AND E	ND	SAFETY PRECAUTIONSs-1	1,326
EE INTERFACES	180	SEALING OF THE CABLE ENTRANCE OF THE	
POWER CANNOT BE TURNED ON	12	CABINET	
POWER SUPPLY		SENSOR I/F UNIT FOR CR-35iA	
PREFACE		SETTING COMMON VOLTAGE	
PREVENTIVE MAINTENANCE		SETTING OF 6-AXIS SERVO AMPLIFIER	
PRINTED CIRCUIT BOARDS	96	SIGNAL	
PROCEDURE OF TEACH PENDANT DISCONNE	CCT	Software Specifications	
	380	SPECIFICATION LIST	
PROCESS I/O BOARD JA (A16B-2204-0010)	99	SPECIFICATIONS	
		SPECIFICATIONS OF DIGITAL INPUT/OUTPLIT	321

B-83195EN/07 INDEX

SPECIFICATIONS OF PERIPHERAL DEVICE	
INTERFACE	313
SPECIFICATIONS OF THE CABLES USED FOR	
PERIPHERAL DEVICES AND WELDERS	221
STOP SIGNALS	19
SUITABLE CABLE DIAMETER	386
<t></t>	
Teach Pendant Cable	
Teach Pendant Connect	381
Teach Pendant Disconnect	380
TEACH PENDANT DISCONNECT FUNCTION	
(OPTION)	
THE CONTROLLER FOR M-900iA/200P, M-2000	
TOTAL CONNECTION DIAGRAM26	
TRANSFORMER	
TRANSPORTATION	
TRANSPORTATION AND INSTALLATION	
TROUBLESHOOTING	12
TROUBLESHOOTING BASED ON LED	
INDICATIONS	
Troubleshooting by Alarm LEDs on the Process I/O	
Board	
Troubleshooting by LED on the Emergency Stop Bo	
Troubleshooting by LEDs on Power Supply Unit	
Troubleshooting by LEDs on the αi PS	90
Troubleshooting by LEDs on the 6-Axis Servo	
Amplifier	88
Troubleshooting by LEDs on the sensor I/F unit for	
CR-35 <i>i</i> A	
Troubleshooting Using the Alarm Code	
TROUBLESHOOTING USING THE ERROR COL	
Troubleshooting Using the LEDS on the Main Boar	
Twisted-pair Cable Specification	237
<w></w>	
When I/O Unit-MODEL A is Used	186
When Process I/O Board JA/JB is Used (B-cabinet)	
When Process I/O Board KA/KB is Used (A-cabine	
When Process I/O Board MA is Used (A-cabinet)	_
When Process I/O Board MB is Used (A-cabinet)	
When Two or More Process I/O Board and I/O	
Unit-MODEL A are Used	188

REVISION RECORD

REVISION RECORD

Edition	Date	Contents
07	Jul.,2015	• Addition of M-2000 <i>i</i> A/1700L/2300, ARC Mate 100 <i>i</i> C/8L, M-10 <i>i</i> A/8L
		Addition of specification of FROM/SRAM module.
		Addition of sensor I/F unit for CR35 <i>i</i> A.
06	Apr., 2015	• Addition of R-2000 <i>i</i> C/125L,/165R,/210R, M-10 <i>i</i> A/7L,/12S, M-20 <i>i</i> A/12L,/20MT,/35MT,
		ARC Mate 100iC/7L,/12S, ARC Mate 120iC/12L, M-900iB/280L, CR35iA
		Correction of errors.
05	Dec., 2013	Addition of R-2000iC, M-410iC. Correction of errors.
04	Dec.,2012	Addition of M-2iA. Correction of errors.
03	Aug.,2012	Addition of M-900iA/200P. Correction of errors.
02	May.,2012	Addition of M-2000iA.
01	Mar.,2012	

B-83195EN/07

* B - 8 3 1 9 5 E N / 0 7 *